
I’ll Be There for You!
Perpetual Availability in the A8 MVX System

André Rösti
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Abstract—Multi-variant execution (MVX) is a low-friction ap-
proach to increase the security of critical software applications.
MVX systems execute multiple diversified implementations
of the same software in lockstep on the same inputs, while
monitoring each variant’s behavior. MVX systems can detect
attacks quickly and with high probability, because low-level
vulnerabilities are unlikely to manifest in precisely the same
manner across sufficiently diversified variants. Existing MVX
systems terminate execution when they detect a divergence in
behavior between variants.

In this paper, we present A8, which we believe is the
first full-scale survivable MVX system that not only detects
attacks as they happen, but is also able to recover from
them. Our implementation is comprised of two parts, an MVX
portion that leverages the natural heterogeneity of variants
running on diverse platforms (ARM64 and x86 64), and a
checkpoint/restore portion that periodically creates snapshots
of the variants’ states and forces variants to roll back to those
snapshots upon detection of any irregular behavior. In this
way, A8 achieves availability even in the face of continuous
remote attacks.

We consider several design choices and evaluate their
security and performance trade-offs using microbenchmarks.
Chiefly among these, we devise a system call interposition
and monitor implementation approach that provides secure
isolation of the MVX monitor, minimal kernel changes (small
privileged TCB), and low overheads – a combination not before
seen in the context of MVX. We also perform a real-world
evaluation of our system on two popular web servers, lighttpd
and nginx, and the database server redis, which are able to
maintain 53%-71% of their throughput compared to native
execution.

1. Introduction

Even after decades of research, memory safety vulner-
abilities continue to be a serious threat to software secu-
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rity [1]. Memory-unsafe languages such as C and C++ are
still among the top 10 most popular languages despite the
fact that memory-safe alternatives exist (e.g., Rust) [2]. Con-
sequently, both legacy and new software written in memory-
unsafe languages is prone to memory errors [3]. Attackers
can exploit memory errors to seize control of even the most
battle-tested software [4]–[12].

Software diversity, one of the established mitigations
against memory exploits, randomizes implementation as-
pects of programs to generate multiple semantically equiv-
alent program variants [13]–[15]. This forces attackers to
target a particular variant, since exploits that successfully
compromise one variant often fail at compromising other
variants. However, software diversity provides only prob-
abilistic protection, and is bypassable in the presence of
information leakages [16].

Multi-variant eXecution (MVX) systems amplify the ef-
fectiveness of software diversity techniques by running mul-
tiple diversified variants in lockstep, typically synchronizing
at the granularity of system calls, while feeding them the
same inputs [17]–[32]. Previous work has shown that well-
constructed variants exhibit the same system call behavior
under normal operating conditions, and diverge only under
attacks [19], [23]. Upon detecting a divergence, the MVX
system assumes the variants are under attack. Traditional
MVX systems then halt all variants immediately to prevent
damage to the host system and its data. Recent research has
suggested the use of heterogeneous hardware as a strong
source of diversity for MVX systems [33]–[35].

MVX combines a set of unique attributes:

1) General-purpose: Unlike specialized mitigations
for narrow classes of specific vulnerabilites, MVX
systems can detect broad classes of attacks, even
some zero-day attacks, as long as attacks manifest
themselves differently across variants. MVX also
provides a clear-cut approach to progressively rais-
ing security: Generating more variants, or increas-
ing the inter-variant variability, leads to immediate
gains.

2) Non-invasive: Creating variants for MVX in general
does not require specialized toolchain support or
manual programmer intervention. Alternative ap-



proaches, such as software fault isolation (SFI),
may require using different tooling, binary rewrit-
ing [36], prohibitive amounts of manual effort,
or they may require rewriting code to use only
a smaller set of allowable features (e.g., no self-
modifying code [37]).

3) Utilizes idle hardware: Creating efficient multi-
threaded software is challenging. As a result, multi-
core hardware often remains underutilized. MVX
systems are a drop-in solution that can turn these
idle resources into increased system security.

MVX systems are comprehensive defenses that intend
to protect critical infrastructure such as web servers. Such
long-running programs cater to an audience with expecta-
tions of availability. Yet, all existing MVX systems imme-
diately halt the execution of the variants upon detection of
divergences.

In this paper, we present A8 1, the first MVX system
that detects memory exploits without sacrificing availability
– that is, execution of the target program may continue
even when a divergence occurs. We opt for a distributed
MVX design to improve security by harnessing platform
heterogeneity of the participating hosts [33]–[35]. Upon
detected divergences, we use checkpoint/restore techniques
to restore the running variants to a previous safe state instead
of terminating their execution. We also highlight overhead
and safety considerations of our system by investigating
various design and implementation strategies.

In summary, our contributions are the following:

• The design and implementation of A8, the first MVX
system that utilizes platform heterogeneity for secu-
rity and checkpoint/restore facilities for availability.

• An exploration of different novel strategies for sys-
tem call interposition, cross-checking, I/O replica-
tion, and checkpointing, and a detailed discussion of
their trade-offs between security and performance.

• A comprehensive evaluation of our system using
microbenchmarks and three popular server applica-
tions.

A8 is available at https://github.com/andrej/a8.

2. Background

Our work builds on three main pillars of previous re-
search: We use software diversity principles to generate
program variants that behave differently under attack. Multi-
variant execution then allows us to detect these differences
at runtime. Upon detected divergences, checkpoint/restore
facilities assure survivability.

2.1. Software Diversity

Introducing diversity can complicate attacks by creating
an unpredictable target. One approach to increase diversity

1. Short for AAAAAAAA: Apparatus Assuring Applications Are Al-
ways Available Amid Attacks

is N-version programming [38], [39]. In N-version pro-
gramming, multiple teams independently construct program
implementations based on the same software specification.

Less labor-intensively, compilers, linkers, and operating
systems can automatically generate program variations at
various stages during the deployment cycle [15]. For exam-
ple, the location of functions can easily be randomized at
compile time.

Hardware heterogeneity provides another strong source
of diversity: Differences in Instruction Set Architectures
(ISAs) and Application Binary Interfaces (ABIs) lead to
diverse program layouts, and complicate any attacks relying
on details like endianness, register set, struct layout, and
available system calls. By compiling software for diverse
platforms, we can thwart attacks such as return-oriented
programming [40], [41].

2.2. Multi-Variant Execution

MVX systems execute diversified but semantically
equivalent program variants on identical inputs, and pe-
riodically cross-check program behavior at so-called ren-
dezvous points using a monitor component. Previous work
showed that monitoring system calls suffices for security
purposes [19], [23]. Consequently, most MVX systems use
system calls as rendezvous points, though other options are
possible [42], [43].

To ensure security, the program variants must be gener-
ated such that they behave identically when provided with
benign inputs, but diverge when processing malicious input.
An effective way to defend against code-reuse attacks, for
example, is to run two variants with asymmetric address
space layouts [19], [28]: any virtual memory address that
points to executable code in one variant refers to data
or an unmapped page in the other variant. Consequently,
any exploit that relies on absolute code addresses causes
divergent behavior, since no address points to code in both
variants.

2.2.1. Monitor Component. The monitor component in-
tercepts and cross-checks system calls, and replicates inputs
and outputs between variants. It can be implemented as a
separate process (so-called cross-process monitor), inside
the kernel, inside the to-be-monitored process (so-called
in-process monitor), or as a hybrid combination. Cross-
process monitors offer strong security guarantees thanks
to the operating system’s process isolation. However, they
introduce significant performance overhead due to the ad-
ditional required context switches between the monitor and
the monitored process, and TLB flushes [44], [45]. In-kernel
monitors provide the lowest overhead but increase the size
of the trusted computing base (TCB). Only a small portion
of an MVX monitor requires elevated privileges to operate;
including all monitor code in the kernel violates the principle
of least privilege and gives any potential vulnerabilities con-
tained in the monitor unnecessarily high potential impact.
Another option are in-process monitors: While these are
efficient, it is challenging to secure and isolate them from the
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potentially exploitable to-be-monitored program. As such,
their application has been mostly limited to MVX systems
focused on reliability, i.e., protecting against inadvertent
faults rather than deliberate attacks.

2.2.2. I/O Replication. Multi-variant execution must en-
sure that the executing variants are fed the same inputs,
and that they look and behave externally like a single
program instance. To do so, the MVX monitor replicates
outward-facing resources which cannot be duplicated for
each variant. Concretely, under MVX, we must execute
certain system calls only once, instead of in each variant,
and replicate the results. We refer to these system calls as
non-repeatable system calls.

Socket-related system calls such as accept are one
example. In a server application, once a program accepts
a client’s connection, any subsequent accept calls return
a different connection. This means that we cannot execute
the accept call in each program variant. To handle non-
repeatable system calls, most MVX systems implement a
leader/follower design. A designated leader node is the
only one permitted to execute non-repeatable system calls.
Follower variants use the system call results from the leader
variant.

2.2.3. Distributed MVX. Traditional MVX systems run
all variants in parallel on the same physical machine. Dis-
tributed MVX systems, on the other hand, execute vari-
ants on multiple physical hosts connected through a low-
latency network [33]–[35]. These systems exploit ABI/ISA-
heterogeneity in the hosts to achieve finer-grained diversity,
and hence better security. Distributed MVX systems can
protect programs against exploits that traditional central-
ized MVX systems cannot, e.g., position-independent code
reuse [46] and data-only attacks [8]. This justifies the higher
overhead associated with a distributed setting [33]–[35].

2.3. Checkpoint and Restore

Checkpoint/restore is a widely used mechanism in dis-
tributed systems as a means to enable fault-tolerance [47]–
[50]. As a program executes, we can store snapshots of
its current state (so-called checkpoints). Upon failure, we
can resume execution from the previously saved state. This
masks the failure to other components and the user. Typi-
cally, checkpointing is expensive, since we need to write the
memory image of a process to disk. We can use techniques
such as incremental and copy-on-write checkpointing to
reduce such overheads [51].

A checkpointing mechanism must capture all program
state to continue execution upon restoration. This state
includes registers, memory contents, and other resources.
For a fully consistent picture, process-external entities such
as contents of opened files and child processes must also
be “dumped”. CRIU (Checkpoint/restore in Userspace) is a
widely used tool that facilitates this in Linux [52]. CRIU
refuses to create a checkpoint if it cannot restore any of the
resources utilized by the process, e.g., opened external TCP

connections, in a consistent manner. For many purposes,
such a complete checkpoint is not required for a successful
restart. For example, in a web server, it may be acceptable
to lose some of the opened TCP connections upon restore,
since modern web servers incorporate provisions to handle
unexpectedly dropped connections. This allows for lighter-
weight partial checkpoints.

3. Threat Model

Our threat model is in line with recent work [33]–
[35], [44]. We assume an adversary that interacts with the
protected target program via a remote connection, such as
a network socket. The adversary’s goal is to exploit one
or multiple memory vulnerabilities present in the target
program. A8 consists of a number of interconnected hosts
executing program variants along a monitor. The communi-
cation between these hosts takes place on a private network
as shown in Figure 1, and is inaccessible to the attacker –
the adversary can only interact with the system through a
network socket with one designated leader host.

On each of the hosts, the operating system and the
hardware are considered part of the trusted computing base
(TCB) and are not protected by our system. Consequently,
attacks that target the underlying hardware are out of scope
for this paper [53]–[57]. We assume that the program vari-
ants are sufficiently diverse, and any attempted attack that
exploits vulnerabilities of the target program causes the
running variants to diverge during their execution. There
are several means of generating diverse program variants,
and we focus on diversity induced by using heterogeneous
hosts.

4. General Design

The goal of A8 is to execute a long-running pro-
gram safely, despite the presence of memory vulnerabilities.
Whenever an adversary launches an exploit, A8 detects the
resulting divergences and restores the program to a previous
safe state. We achieve this through a distributed MVX
design coupled with a checkpoint/restore mechanism. In this
section, we outline the components of our system and their
interactions.

A8 consists of several heterogeneous, interconnected
hosts, as shown in Figure 1. Initially, we derive several
variants of the to-be-protected program by compiling it for
the ABI/ISA of each host. We then execute these variants
concurrently and in lockstep. Each host runs a monitor com-
ponent alongside its program variant. At regular intervals
(defined by the user of our system), the monitors create
checkpoints of the variant’s current state.

Whenever a variant attempts to execute a system call,
its monitor communicates with the monitors of the other
variants to ensure that all hosts attempt to execute the same
system call. If the monitors do not detect any divergences
in the system call numbers or arguments during this cross-
checking phase, they allow the system call, replicate the call
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Figure 1: A8’s main components. Two or more diverse hosts
execute program variants, while a monitor cross-checks for
divergences. The monitor also periodically creates snapshots
of the current program state to reset to upon a divergence.

results to other hosts if necessary, and resume execution
of the variant. The monitors treat any divergence as an
indicator of an ongoing attack or a failure. They address
the divergence by resetting the variants to a safe previous
checkpoint. This allows the program to continue serving new
users, even after attacks or failures.

In our design, we distinguish one designated leader host
and one or more follower hosts. Most system calls are
executed on all nodes, but the leader is the only one to exe-
cute system calls that cannot be repeated (see Section 2.2),
replicating their results to followers.

Our MVX system runs variants on heterogeneous hosts
that have different ISAs and ABIs. By compiling programs
for different platforms, we automatically achieve a high
degree of diversity due to differences in low-level details
like function sizes and data structure layouts. Our current
implementation is geared towards x86 64 and ARM64 hosts.

5. Design: Multi-Variant Execution System

Our MVX system fulfills its duties of cross-checking
variant behavior and input/output replication primarily by
monitoring and manipulating system calls, as shown in Fig-
ure 2.

5.1. Secure System Call Interposition

To intercept and manipulate system calls, we imple-
mented a new safe in-process monitor, comprised of two
cooperating components: a loadable kernel module and a
shared library. We embed the MVX monitor into each
variant process by forcing it to load our shared library. Once
loaded, our kernel module intercepts all system calls and im-
mediately transfers control to a trampoline function within
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Figure 2: We process system calls in several stages. First,
the monitor intercepts the system call. It then serializes
the system call number and arguments, and transforms this
information into a platform-agnostic form. Subsequently, the
monitors communicate to compare these canonical states.
If the states match, the monitors resume all variants and
replicate the system call results to other variants where
needed.

our shared library. In this trampoline function, the in-process
monitor can inspect and manipulate the original system call
as it sees fit. Once the trampoline function returns, our kernel
module ensures that the shared library portion of our monitor
is protected from tampering by the rest of the program, and
resumes the target program’s execution. We kept the size of
the kernel module as small as possible, reducing the amount
of trusted, highly privileged code. The kernel module’s only
responsibilities are intercepting system calls and providing
isolation for the in-process monitor, while the heavy-lifting
of system call monitoring is done in userspace.

As a result of this design, our system call interposi-
tion mechanism avoids the high overhead of cross-process
monitors, but still enjoys two of their main benefits: (i) low-
privilege execution in userspace, and (ii) proper isolation of
the monitor from the rest of the program. While approaches
based on binary rewriting [21] can achieve even lower
overheads, they cannot provide monitor isolation, and thus
are not applicable to security-focused applications where the
monitor must remain tamper-proof.

5.1.1. General Principle. To load the userspace portion of
our in-process monitor into each variant process, we use
LD_PRELOAD [58]. During its initialization, the shared li-
brary uses a custom system call to inform the kernel module
about its own address range and the address of a system
call trampoline. The kernel module distinguishes monitor
and application system calls. A monitor system call is any
system call that originates from a syscall instruction in
the shared library’s address range. Our kernel module allows
monitor system calls to execute without monitoring. For



application system calls, our kernel module redirects the
instruction pointer to the trampoline and immediately returns
to the monitor component in userspace. The userspace por-
tion of our monitor then inspects the system call, and may, if
it deems appropriate, execute the system call on behalf of the
target program. After processing the original system call, our
monitor returns to the target program’s original system call
site via the kernel module, which restores register and stack
state as if the originally requested system call returned. Our
design is similar to Syscall User Dispatch (SUD), a feature
present in recent Linux kernels [59]. However, unlike SUD
our kernel module also protects the in-process trampoline
against tampering and circumvention, as we describe in the
next section 2.

5.1.2. In-Process Monitor Safety. Since we embed the
monitor directly into the variant processes, we take extra
precautions to protect the monitor from the potentially com-
promised variant program. A naive implementation allows a
malicious target program to circumvent any protections pro-
vided by the monitor, either by modifying the monitor’s code
and data, or by abusing the monitor as a confused deputy to
execute unmonitored system calls by jumping directly to a
syscall instruction in the monitor. We implemented two
versions of a safety mechanism that protects our in-process
monitor, detailed in the next two sections.

5.1.3. mprotect-Based Mechanism. The first mechanism
uses hardware memory protection features. We disable the
read, write, and execute permissions for all of the monitor’s
shared library pages. When a system call occurs, our kernel
module temporarily restores the original page permissions,
just before transferring control to the system call trampoline.
When the trampoline returns control to the module, we make
the monitor pages inaccessible again. This mechanism works
well but incurs high runtime overhead due to additional
mode switches and TLB flushes.

5.1.4. Flag/Compare-Based Mechanism. Our second ver-
sion, shown in Figure 3, vastly improves performance. It
protects the integrity of our monitor using three measures:

First, our kernel module rejects any system calls (such as
mprotect) that attempt to change the protection flags of
the monitor’s executable or read-only memory. This ensures
the integrity of monitor code and read-only data.

Second, whenever the monitor returns from its system
call trampoline, our kernel module copies the shared li-
brary’s mutable memory into a kernel-space shadow buffer.
Before the kernel module calls the trampoline, it compares
the shadow buffer with the monitor’s writable memory. If it
detects any changes, the variant tampered with the monitor
state, and handles this like any other attack detected by our
system through the checkpointing mechanism. This protects
the mutable memory of the monitor between system call
invocations.

2. https://docs.kernel.org/admin-guide/syscall-user-dispatch.html#secur
ity-notes
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Figure 3: When a target program attempts a system call,
the kernel module flips a flag and ensures the monitor’s
mutable memory has not changed since the last system
call invocation by comparing it with a shadow copy in
the kernel. The kernel module then forwards the system
call information to the in-process monitor. During moni-
tor execution, system calls are unmonitored, allowing the
monitor to execute the requested system call on behalf of
the program. Upon monitor return, the kernel module flips
the flag back and updates the shadow copy of monitor state
before returning to the original system call site.

Third, we protect against unauthorized execution of
system call instructions in the monitor’s code using state
tracking. The kernel module sets an IN_MONITOR flag
whenever it redirects execution to the monitor trampoline.
We reset this flag when the trampoline returns. If the target
program executes a syscall instruction from one of the
monitor’s code pages, and the flag is not set, we assume the
variant is trying to abuse our monitor as a confused deputy,
and immediately restore to the last checkpoint. Thus, the
userspace portion of the monitor can only execute system
calls if execution properly flowed to its trampoline via the
kernel.

5.2. Canonicalization & Serialization

After system call interception, our userspace monitors
communicate with each other to verify that all variants
called equivalent system calls. To do so, the monitors first
serialize and canonicalize the system call information into
a platform-agnostic normalized form.

https://docs.kernel.org/admin-guide/syscall-user-dispatch.html#security-notes
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5.2.1. Canonicalization. OS resource identifiers, such as
file descriptors (FDs) and process IDs (PIDs), may differ
between variants even if they refer to the same underlying
resource. Our system maintains a second set of canonical
identifiers, and a mapping between canonical and local
identifiers. The target program is only ever exposed to
canonical identifiers; we perform translation to and from
local identifiers at system call entry and exit.

Besides identifier canonicalization, system call numbers
and arguments also need to be translated into a platform-
agnostic form. First, we redirect system calls that do not ex-
ist in all architectures. For example, in Linux for the ARM64
architecture, many legacy system calls are missing. These
must be redirected in x86 64 variants. When a legacy system
call is observed, we use its newer superseding system call as
the canonical form. Second, system call argument data types
may differ in alignment and size between architectures. We
canonicalize such data types to a platform-independent form
with fixed data type sizes and consistent padding/alignment.
For example, we implemented such canonicalization for the
struct stat and struct epoll_event data struc-
tures.

5.2.2. Serialization. For transmission, we must serialize the
system call arguments, including any referenced buffers.
Where replication is needed, we also serialize the results
of system calls. We implemented a generic framework, in
which the system call entry handler provides a type descrip-
tion for each of its arguments (or return values). Types can
be IMMEDIATE, POINTER, or BUFFER.

POINTER type descriptions specify the type of the
pointed-to data, often a BUFFER. BUFFER type descriptions
indicate the length of the buffer, and any number of refer-
ences contained within the buffer. References are tuples of
(offset,type), which describe pointers within the buffer
that need to be recursively serialized.

The system call entry handlers dynamically generate
these type descriptions, because not enough information is
available statically to describe all argument types. For ex-
ample, for many system calls such as write, one argument
is a buffer, whose size is given dynamically in one of the
other arguments.

5.3. Cross-Checking

Our cross-checking mechanism verifies that all variants
execute semantically equivalent system calls.

5.3.1. Cross-Checking Policy. Since cross-checks require
(costly) network communication between all hosts, omitting
cross-checking for non-critical calls can greatly reduce over-
head. We thus allow the system administrator to configure
a cross-checking policy, which exempts some system calls
from cross-checking. Different policies provide different
trade-offs between security and performance. The available
policies are identical to previous work [34], [44]. We list
a selection of three interesting policies with their checked

system calls and the class of attacks they protect from, in
increasing order of security:

• Code Execution: execve, mmap, mprotect
• Information Disclosure: read/write calls, execve,

mmap, mprotect
• Comprehensive - cross-checks all system calls

5.4. Execution & Results Replication

After successful cross-checking, we either execute the
system call on all nodes, on the leader node only, or we
emulate the system call. We execute system calls inside
the monitor, on behalf of the traced program variant. This
“delegation” approach [44], [60] prevents time-of-check-to-
time-of-use attacks, and it allows emulation, which we use
to quickly return cached results for system calls such as
getpid.

We execute non-repeatable system calls (see Section 2.2)
on the leader only and replicate the system call return value
to all follower nodes. We do this using the same canoni-
calization & serialization framework described before. To
the program, the result looks as if the system call executed
locally.

Replication is one of the biggest sources of overhead
in our system, because it requires network transmissions.
We thus avoid results replication and execute system calls
locally on each node when possible.

5.4.1. Replication Batching. In contrast to cross-checking,
which can be omitted for non-security-sensitive system calls,
replication can never be skipped; the target program depends
on system call results to continue execution.

However, to improve replication performance, we can
batch replication information. When batching is enabled, the
leader gathers the results of back-to-back non-cross-checked
system calls locally. When we reach threshold batch size (or
a system call requires cross-checking), the leader sends its
batch to followers. Thus, the leader progresses ahead of the
follower in program execution for a number of system calls.
When the leader sends replication information, the followers
catch up.

Although batching increases the latency of some sys-
tem calls individually, it improves the overall system per-
formance, because it amortizes network communication
overheads. To see this, consider a chain of N back-to-
back non-cross-checked system calls, each requiring results
replication. Each system call i requires processing time on
the leader pleader

i and the followers pfollower
i . Every network

exchange j introduces a fixed latency overhead clatency and
a length-dependent transmisison time ctransmission

j .
Without batching, the time required for our chain of N

system calls on the follower is:

Nclatency +

N∑
i=1

pleader
i + ctransmission

i + pfollower
i



Note that we have N individual network exchanges. Now,
if we batch up N system call results into one network
exchange, execution time becomes:(

N∑
i=1

pleader
i

)
+ clatency + ctransmission

1..N︸ ︷︷ ︸
wait for leader to execute & replicate syscalls 1 .. N

+

(
N∑
i=1

pfollower

)

Note that now we have only one (larger) network ex-
change, so we save (N−1) terms of clatency. Since many to-
be-replicated system call return values are only a few bytes
in size (often a single integer indicating error or success),
exchanging such small values individually quickly leads to
network latency dominating execution overheads, making
batching beneficial.

5.4.2. Other Optimizations. Asynchronous replication ex-
ploits the fact that we can exchange replication information
in a “fire-and-forget” manner. With asynchronous replication
enabled, the leader does not wait for the followers’ receipt
acknowledgements. Furthermore, we identified cases where
we can cache replication results. We found the contents
of many replication buffers to be identical, e.g., when a
program repeatedly reads the same file. We considered
keeping a local cache of frequently encountered replication
buffers. If a replication buffer is resident in the cache, the
leader sends a small identifier for the cache entry number
instead of its contents. However, due to the small size of
the individual replication buffers we encountered in our
benchmarks, caching was not a useful optimization; the ad-
ditional processing slowed the system down overall. Caching
may, however, be useful when using a slower inter-monitor
connection.

6. Design: Checkpoint/Restore

Our checkpoint/restore mechanism is the key enabler for
the survivability of the applications we protect. At regular
intervals, our system captures the state of all variants. We
then roll all variants back to the most recent checkpoint if
we detect divergent behavior, as shown in Figure 4.

6.1. Determining Checkpointing Locations

Our system creates checkpoints at configurable program-
specific locations. The system administrator must carefully
choose locations that are (i) functional and (ii) safe. For
functionality, any location that allows the program to con-
tinue executing without errors is acceptable. For safety, we
should avoid any locations at which an attacker may have
already compromised the system. Consider that an attack
may begin at some point in time ta, but not be detected
until a later system call at time tb. Creating a compromised
checkpoint during the attack build-up (i.e., at time t with
ta ≤ t < tb) could result in denial of service, as our system
would repeatedly detect the attack, then reset the system
only to launch the same attack again. We must thus choose
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Figure 4: At user-defined breakpoints, the monitor creates
a copy of the current program state. When the monitors
observe divergent behavior (e.g., due to an implementation
bug or attack), they roll execution of all variants back to the
most recent checkpoint.

a checkpointing location for which we can reason, based on
program-specific semantics and our threat model, that it is
a “clean slate”.

In general, we have observed that long-running programs
often contain some variation of a main loop that polls for
events or requests. The beginning of an iteration of such
a loop is often suitable as a checkpointing location. In a
web server, for example, the connection “accept” phase
is a suitable checkpointing location. Rolling back to the
beginning of the “accept” phase will result in the server
dropping the attacker’s connection, and return the server
to a state where it is ready to serve the next incoming
request. Doing so also ensures safety: Before the remote
attacker’s connection was accepted, (s)he could not yet have
compromised the system.3

In our implementation, system administrators define
checkpointing locations in a configuraiton file as either a
fixed addresses or a symbol name (e.g. a function) in the
target executable (plus an optional offset). Upon startup,
our monitors insert software breakpoints (int3 on x86 64,
brk #0 on ARM64) at those locations. Our monitor also
registers a custom SIGTRAP signal handler, which the
OS invokes whenever a variant hits one of these software
breakpoints. The signal handler then initiates our checkpoint
creation mechanism, single-steps the original instruction
by inserting another software breakpoint directly past it,
reinserts the breakpoint at the original instruction, and then
resumes normal execution.

3. This argument assumes there are no concurrent connections, which is
the case for our benchmarks.



6.2. Checkpoint Creation and Restoration

We implemented two versions of our checkpoint/restore
mechanism. The first stores program state to disk and is
suited for most programs but is slow. The second only
retains the most recent checkpoint in memory and does
not support multi-threaded applications but is considerably
faster.

6.2.1. CRIU-Based Checkpointing. The first version of our
checkpoint/restore mechanism is based on CRIU [52]. To
create a checkpoint, CRIU suspends a process and dumps all
of its state to an image file on a disk. Creating checkpoints
with CRIU is relatively slow due to the comprehensive
nature of its state capturing and use of disk storage.

6.2.2. fork-Based Checkpointing. To address the perfor-
mance degradation caused by CRIU, we implemented an
alternative, more lightweight design that trades complete-
ness for speed. This design uses the fork system call,
setjmp/longjmp, and a shared memory block. At a
glance, it works in three steps: (i) we create an identical
child of the to-be-checkpointed parent process, (ii) we pause
execution of that child, and (iii) we resume execution of
the child and kill the parent when we want to restore the
checkpoint.

Concretely, we implemented this scheme as follows:
First, we initialize a shared memory block to be used for
communication. When we want to create a checkpoint, we
issue a fork call in the variant process. The resulting child
process is an exact duplicate of its parent, including a copy
of the parent’s virtual address space, with access to the
shared memory. Our checkpointing code in the child then
pauses until it receives a command from its parent passed
through the preallocated shared memory block.

To restore the last checkpoint, the parent process sends
a restore command to the child and exits. The check-
pointing code in the child, waiting for commands, sees this,
and resumes execution where the checkpoint creation routine
was first entered using setjmp/longjmp. By resuming
execution at the beginning of the checkpoint creation rou-
tine, the to-be-restored checkpoint is effectively duplicated.
One of the copies then continues executing normally, start-
ing from the checkpointed location, while the other is once
again paused waiting for commands, allowing us to restore
the same checkpoint multiple times. If a checkpoint is no
longer needed, the parent can instead also send a delete
command, which causes the child to exit.

7. Evaluation

We assess the real-world practicality of our system on
two popular web servers, lighttpd and nginx, and a database
server, redis. We also analyze which components contribute
most to our system overheads using four microbenchmarks.
Our experiment setup consists of an ARM64 leader ma-
chine (2.0GHz Marvell Thunder X ARMv8 processor, 64
GB DRAM) and an x86 64 follower machine (3.6 GHz
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Figure 5: Throughput of our system relative to native execu-
tion (higher is better). In the benign setting (0% divergences)
our system monitors program execution, but no attacks
occur. In the increasingly hostile settings (0.1%− 5%), we
randomly inject divergences (simulating attacks or failures).
Upon a divergence, our system resets variants to the last
created checkpoint. Note that redis was unable to serve
any requests at the 5% error rate. We used a permissive
(Code Execution) policy and a batch size of 8KB for these
experiments.

Intel Core i9, 32 GB DRAM) that are directly connected
via Mellanox ConnectX-5 100 Gbps NICs. Both machines
run Ubuntu 22.04.4 LTS (leader: kernel version 5.15.151).
Dynamic frequency and voltage scaling are disabled, and
benchmarks are isolated on their own dedicated cores. We
report the mean measurements of five runs; the standard
deviation in all cases, except for the experiments shown
in Figure 5, is below 2.5%.

7.1. lighttpd, nginx, and redis

To test each of the lighttpd, nginx and redis workloads,
we opened 10 client connections and issued back-to-back
requests from a separate client machine, which is connected
to the leader with a 1 Gbps link. This evaluation setting
is similar to previous work [33]–[35]. For the web servers,
we used the wrk HTTP benchmarking utility; for redis, we
used redis-benchmark, which we slightly modified to ignore
failed requests (due to simulated errors). As checkpoint
creation locations, we chose the “connection close” phase
for nginx and lighttpd, and the start of the main event loop
for redis.

Figure 5 shows how our system fares in varyingly
hostile real-world settings. Note that A8 continues serving
requests, even after repeated failures; this is not possible
in other MVX systems. We injected errors (which trigger
divergences) with the given probabilities for each system
call. These low per-system-call error rates translate to much
higher per-request failure probabilities, since the target pro-
grams issue multiple system calls for each handled request.
For example, lighttpd issues 12 system calls on average per
request – for our highest error rate of 5%, this translates to
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Figure 6: Effect of cross-checking policy on request through-
put, relative to native execution (higher is better). The batch
size was 8KB.

a probability of 1 − 0.9512 = 46% that any given request
experiences a failure.

To demonstrate the benefits of deploying our system, we
compare it to a simple alternative approach that achieves
crash-survivability: Restarting the target application when-
ever a failure occurs.4 We use redis as an example. In our
experiments, native redis took 0.02ms on average to process
one request, and its start-up time was 5ms. redis issues three
system calls (epoll_pwait, read and write) for each
received ping request; if any of those calls fail, the entire
request fails. Therefore, if some anomaly causes system calls
to fail with a 1% probability, we expect ∼ 3% of all requests
to fail.5 If we crash and restart upon each failure, we expect
a new average request processing time of

97%× 0.02ms+ 3%× (5ms+ 0.02ms) = 0.17ms,

i.e., the 3% of requests that fail incur an additional “restart”
overhead of 5ms each. This equates to roughly 0.11× of
native execution throughput without failures. Note that this
alternative also does not protect against deliberate attacks,
only accidental failures. In contrast, our solution, which
includes application monitoring and protection against de-
liberate attacks, achieves 0.15× of native throughput, at the
same 1% per-syscall error rate. Our solution also retains
the built-up state of the application up to the last created
checkpoint, whereas the alternative approach might lose
valuable information at each restart. This evidences the
advantage of A8’s checkpoint/restore-MVX approach.

If there are no errors during execution, our system
performance is comparable to similar MVX systems. For
example, MvArmor [29] introduces 1.4× and 1.7× runtime
overhead for nginx and lighttpd, respectively, under a Code
Execution policy with two running variants, whereas A8

introduces 1.8× and 1.4× runtime overhead for the same

4. A “watchdog”, that immediately restarts the program if it crashes, is
often present on server applications. This only provides resilience against
application crashes. Targeted attacks that divert program execution success-
fully without a crash remain undetected.

5. Successful request probability: 0.993 ≈ 97%
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Figure 7: Effect of replication batch size on request through-
put relative to native (higher is better). We used the Code
Execution policy. Lenient policies enable batching replica-
tion information (see Section 5.4), which amortizes the cost
of network latency.

benchmarks and setting (for this comparison, we calculated
runtime as the inverse of throughput in Figure 6).

Figures 6 and 7 show how the cross-checking policy and
replication batch size affect performance overheads when no
failures occur (see Sections 5.3 and 5.4). Exempting system
calls from cross-checking via a permissive policy greatly re-
duces overheads in two ways: (i) some costly cross-checking
network traffic is eliminated, and (ii) batching of replication
information becomes possible. Note that the replication
batch size merely is an upper limit; our system will send out
replication information before the batch is filled if the next
system call requires cross-checking. We observed that larger
batch sizes yield no additional benefit under more restrictive
policies. The largest effective batch size is directly related
to the amount of replication information generated by non-
checked system calls between any two checked system calls.

7.2. Microbenchmarks

The primary overheads of our system stem from three
sources: (i) system call interposition, (ii) network commu-
nication (for cross-checking and result replication), and (iii)
checkpoint creation. We evaluated each of those sources in
isolation with four simple microbenchmarks, which repeat-
edly issue one system call (read on a device and on a file,
getcwd, and sched_yield) for one million iterations.

7.2.1. System Call Interposition Overhead. We isolated
the cost of intercepting and redirecting system calls to our
in-process monitor by disabling all other processing (cross-
checking, replication, checkpoint creation) in the monitor.
The monitor protection mechanism (see Section 5.1.2) then
dominates the overhead, as evidenced by Figure 8. The large
slowdowns of the mprotect-based mechanism on ARM64
(14.8 − 20.5×) and x86 64 (6.9 − 8.1×) primarily occur
due to the TLB flush incurred when changing page table
protection bits. The flag/compare mechanism, which uses
an in-kernel shadow buffer to guarantee monitor integrity,
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incurs negligible runtime performance overheads compared
to the unprotected monitor,6 making this an attractive com-
bination of safety and speed. However, we observed that the
cost of this protection approach scales linearly with the size
of protected memory. It is, therefore, advisable to minimize
the monitor memory usage. We used the flag/compare-based
mechanism in all of the following microbenchmarks.

7.2.2. Networking: Multi-Variant Execution Overhead.
One of the primary sources of overhead in a distributed
MVX system is the network communication required for
cross-checking and results replication. We aimed to mini-
mize both the number and size of exchanged messages, and
we implemented batching of replication messages to amor-
tize the network latency. Figure 9 shows the total system call
execution overhead of the multi-variant execution portion of
our system (i.e., checkpointing disabled) for cross-checked

6. An unprotected monitor should not be used for a system like ours, as
it can easily be corrupted. We show it here only as a lower-bound.

none 512 1024 2048 4096 8192 16384
Replication Batch Size (bytes)

0

20

40

R
un

tim
e 

O
ve

rh
ea

d

26.0× 26.6×

17.0×
12.8× 10.7× 9.0× 8.4×

Replicated System Call Overhead
Interposition Processing Replication

Figure 10: Breakdown of execution overhead for a non-
cross-checked and replicated system call, reading 512 bytes
from a device (lower is better). Network latency is amortized
by executing multiple system calls on the leader, and then
replicating those results to the follower in batches.

system calls. All system calls in our system pass through
interposition, serialization, and canonicalization phases. Ad-
ditionally, for this experiment, we activated cross-checking
for all system calls. Cross-checking requires exchanging
messages between variants, which adds networking over-
head. One microbenchmark also required replication; read
operations on device files are non-repeatable, and therefore
only execute on the leader machine, necessitating network
communication for result replication. The three other system
calls in this experiment executed locally, eliminating the
need to replicate results. The cross-checking cost dominates
their overhead. In line with prior work [34], we observed that
cross-checking between variants incurs high runtime over-
head, dominated by network communication costs. Note,
however, that these benchmark programs relentlessly is-
sue back-to-back system calls. This represents a worst-
case scenario for our system. Real-world applications are
unlikely to experience slowdowns as dramatic as this, since
their execution also incorporates some userspace processing,
which is not slowed down by our system. Further note
that system calls can be exempted from cross-checking by
selecting a permissive policy (see Section 5.3), in which
case overheads consist solely of interposition, processing,
and potential replication.

We also evaluated the effect of replication batching with
varying batch size (see Section 5.4) using our read mi-
crobenchmark and present our results in Figure 10. To allow
for batching to take effect, we disabled cross-checking, since
cross-checking would require flushing the replication buffer.
Thus, this microbenchmark captures an ideal case where
unlimited back-to-back non-cross-checked system calls take
place. In real-world use cases, a system call requiring cross-
checking would eventually be encountered, setting an upper
limit to the effective batch size. Our evaluation shows that,
as batch size increases, we use the internal network more
efficiently by exchanging more information per message.
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7.2.3. Checkpointing Overhead. We evaluated both our
fork-based and CRIU-based checkpointing mechanisms on
the read (device) microbenchmark. To isolate check-
pointing costs, we executed only one variant (thus elimi-
nating network communication costs of MVX). Figure 11
shows the results of this microbenchmark running on the
ARM64 server. We chose the system call site inside the mi-
crobenchmark’s main loop as the checkpoint creation loca-
tion. Our results indicate that the fork-based checkpointing
significantly outperforms CRIU-based checkpointing, which
we attribute to the following reasons: (i) fork uses copy-
on-write paging to delay and potentially avoid copying the
checkpointed process’ memory contents, (ii) this approach
stores checkpoint images in memory rather than on disk, (iii)
child processes hosting the checkpoint images share much
of their process state (e.g., file descriptors) with the check-
pointed process, thus allowing us to minimize the amount
of state we need to store, and (iv) CRIU aims to store all
associated state of a process, whereas the fork approach
is more limited. Note that the results shown in Figure 11
correspond to an extreme case in which the breakpoint
triggering the creation of a checkpoint is inside a hot loop.
For more realistic use cases, we should carefully choose
breakpoint locations that minimize the number of generated
checkpoints, thus reducing the checkpointing cost.

8. Discussion

We envision several avenues for future improvements
to A8: To improve performance, our system call interposi-
tion mechanism could use novel hardware-based protection
mechanisms such as Intel CET and PKU [61], eliminating
the need to check monitor integrity at each system call.

To improve generality, we could extend our system to
support multi-threaded applications. Techniques to support

multi-threaded programs in MVX already exist [62], [63]
and could be ported to our system.

Our implementation currently also requires manual se-
lection of checkpointing locations; the automatic detection
of suitable checkpoint locations could also be an interesting
avenue of future research.

9. Related Work

9.1. Traditional Mitigations

Both industry and academia proposed two main classes
of mitigations against memory exploits, control-flow in-
tegrity [36], [64], [65] and software diversity [15]. Operating
systems and stock toolchains adopted some of these mech-
anisms [66], and even CPU manufacturers added hardware
support for them (e.g., Intel CET [61]). Unfortunately, both
software diversity and control-flow integrity have known
weaknesses [8], [46], [67].

9.2. Multi-Variant Execution

Previous work explored multi-variant execution solu-
tions for security [17]–[19], [23], [24], [29], [31], [35], [68]
and reliability purposes [21], [25], [69]–[71]. Xu et al. and
Pei et al. also showed that MVX systems can be used to
combine multiple security mechanisms [63] and reconstruct
exploits respectively [72]. Multi-variant execution is not
without its flaws, however, as it usually imposes non-trivial
requirements on protected programs. Researchers proposed
techniques to alleviate limitations that are common to var-
ious MVX systems such as thread synchronization [62],
[63], shared-memory support [18], [73], address-dependent
behavior [27], and consistent signal delivery [18], [23].

9.3. System Call Interposition

Previous research has investigated several techniques for
system call interposition [74]–[76]. These techniques in-
clude utilizing existing Linux facilities [45], [59], [77]–[80],
modifying the kernel [29], [60], [81]–[85], and employing
binary rewriting [21], [86]–[88]. Additionally, some studies
have explored the integration of various approaches [89],
[90].

10. Conclusion

We presented A8, a system that combines multi-variant
execution with checkpoint/restore facilities to protect long-
running programs, e.g., server applications, facing continu-
ous attacks without undermining their availability. A8 har-
nesses platform heterogeneity to defend against memory
exploits. Our system incorporates new mechanisms for safe
and fast system call interposition, amortized state replica-
tion, and checkpointing. Our evaluation shows promising
results on microbenchmarks and popular server applications,
demonstrating the potential of our approach to improve the
security and availability of critical infrastructure.
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