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Abstract

Stencil computations carried out on discrete grids are a fundamental algorithmic motif in
weather and climate models and are used to solve the governing differential equations of
the atmosphere. These data-local calculations are easily parallelizable and are frequently
implemented as GPU programs. Using unstructured grids in such applications enables
more flexible and fine-grained modeling than regular grids, but necessitates an additional
level of indirection in the stencil implementation. In this thesis, we seek to quantify
the cost of the indirect addressing overhead and aim to minimize it through various
optimizations.

We implement and benchmark three stencils, using the Nvidia CUDA programming
model, on regular and unstructured grids, and compare their runtimes. We explore five
methods to access a grid’s cells in a stencil code and test four strategies for storing the
grid’s structural information (neighborship table). Notably, we conceive a compression
scheme for the neighborship table, which improves runtimes compared to uncompressed
implementations by 30% in some cases. Most of the other optimizations make use
of an assumed regular structure in one of the dimensions, which is generally given in
meteorology use cases.

We initially observe slowdowns of up to 2.07x for one stencil and improve this value
to 1.45x with our optimizations. In one of the more complex stencils, indirect addressing
leads to an overhead of only 1.04x, which we cannot appreciably reduce. We observe
that the effective use of caches is paramount to performance.

We gather that the overhead of using unstructured grids is minute for complicated
stencils. In simple stencils, the relative slowdowns are larger but can be improved by
several changes to the grid access and storage implementations.

i



Contents

1 Introduction 1

2 Related Work 3

3 Background 5
3.1 Grids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3.1.1 Coordinates and Indices . . . . . . . . . . . . . . . . . . . . . . . . 6
3.2 Stencils . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.3 GPU Programming on the Nvidia CUDA Platform . . . . . . . . . . . . . 7

3.3.1 SIMT Execution Model . . . . . . . . . . . . . . . . . . . . . . . . 8
3.3.2 Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.3.3 Streaming Multiprocessors . . . . . . . . . . . . . . . . . . . . . . . 9
3.3.4 Memories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.3.5 Performance Considerations . . . . . . . . . . . . . . . . . . . . . . 13

4 Grid Storage Strategies 17
4.1 Regular Grids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.1.1 Row-major Indexing . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.1.2 Neighborship Relations . . . . . . . . . . . . . . . . . . . . . . . . 18
4.1.3 Memory Alignment . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.2 Unstructured Grids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.2.1 Memory Layout and Indexing of Cells . . . . . . . . . . . . . . . . 19
4.2.2 Neighborship Relations . . . . . . . . . . . . . . . . . . . . . . . . 21
4.2.3 Indirect Addressing Overhead . . . . . . . . . . . . . . . . . . . . . 25

4.3 Representing Multiple Fields . . . . . . . . . . . . . . . . . . . . . . . . . 28

5 Grid Access Strategies 29
5.1 Naive Grid Access and Index Variables . . . . . . . . . . . . . . . . . . . . 29

5.1.1 Naive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.1.2 Index Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.2 Optimizations Making Use of the Z-Regularity . . . . . . . . . . . . . . . 30
5.2.1 Index Variables + Shared Memory . . . . . . . . . . . . . . . . . . 30
5.2.2 Index Variables + Z-loop . . . . . . . . . . . . . . . . . . . . . . . 32

ii



CONTENTS iii

5.2.3 Index Variables + Sliced Z-loop . . . . . . . . . . . . . . . . . . . . 32

6 Benchmark Results 33
6.1 Setup and Benchmarked Stencils . . . . . . . . . . . . . . . . . . . . . . . 34
6.2 Overview of Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
6.3 Effect of Access Strategy in Stencil Implementation . . . . . . . . . . . . . 38

6.3.1 Naive and Idxvar Access Strategies . . . . . . . . . . . . . . . . . . 38
6.3.2 Z-loop and Z-loop-sliced Access Strategies . . . . . . . . . . . . . . 39
6.3.3 Shared Access Strategy . . . . . . . . . . . . . . . . . . . . . . . . 40
6.3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

6.4 Effect of Grid Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
6.4.1 Pointer Chasing vs. Neighbor-of-Neighbor Storage . . . . . . . . . 43
6.4.2 Effect of Neighborship Table Compression . . . . . . . . . . . . . . 45
6.4.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

6.5 Optimal Block Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
6.5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
6.5.2 Optimal Block Sizes per Access Strategy . . . . . . . . . . . . . . . 51

6.6 Effect of Problem Domain Size and Precision . . . . . . . . . . . . . . . . 54
6.6.1 Change in X and Y Domain Size . . . . . . . . . . . . . . . . . . . 54
6.6.2 Change in Z domain size . . . . . . . . . . . . . . . . . . . . . . . . 55
6.6.3 Effect of Floating-Point Precision . . . . . . . . . . . . . . . . . . . 56

7 Conclusions 57



Chapter 1

Introduction

Weather prediction is a challenging task for computers. A large number of factors, drawn
from large data sets, interact in ways governed by complex physical equations. In order
to solve the governing equations of the atmosphere, the computations are discretized
on grids spanning the globe (or some local segment of it). Methods such as the finite
differences and finite volume method solve these equations by performing (simple) cal-
culations on each cell that depend only on a limited neighborhood of that cell. This type
of computation, called a stencil, can be implemented efficiently on graphics processing
units, which provide a massively parallel architecture.

Needless to say, a weather prediction computation for some instant in the future is
only useful if the computation terminates before that point in time. Therefore, perfor-
mance is a critical aspect of any application in weather prediction. The desire for more
accurate results, on the other hand, opposes fast runtimes.

More fine-grained grids provide more accurate results but naturally lead to higher
data traffic and slower runtimes. So-called unstructured grids provide a compromise be-
tween globally coarse and globally fine-grained regular grids. Unstructured grids enable
higher resolutions in areas of interest while other areas that require less detail can be
covered by larger cells. Because of their inherent irregularities, however, unstructured
grids add additional overhead. Finding the location of neighboring cells’ values especially
becomes more involved, requiring additional memory lookups.

The main aim of this thesis is to contrast stencil performance in regular and unstruc-
tured grids, as well as exploring some means of optimization. The discrete approxima-
tions of the atmosphere’s equations are of low arithmetic intensity – the computations
performed on each cell are simple. However, the operations performed are very memory-
bandwidth hungry, as each cell requires a lot of input data (several neighboring cells).
Thus data locality greatly aids performance. The major focus of this report thus lies in
evaluating different memory access strategies and schemes for optimizing the neighbor-
ship lookups in unstructured grids for three selected stencils.

In the following sections, we first explain the characteristics of grids and stencils in
more detail and elaborate on the architecture of GPUs, on which these stencil calcu-
lations are performed. We continue by showing our pursued methods of implementing
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CHAPTER 1. INTRODUCTION 2

regular and unstructured grid memory layouts and show different unoptimized and opti-
mized means of accessing grid elements in stencil computations from the GPU. In section
6, we finally present the observed overhead that the use of unstructured grids imposed
when calculating identical stencils on identical data.



Chapter 2

Related Work

Implementing stencils on regular grids using parallel architectures is a topic that has
been extensively covered. The realization of frameworks for automatic stencil code gen-
eration and auto-tuning has seen special attention; examples include [1], [2], and [3].
In [4], a domain-specific language for stencil applications on regular grids is presented
alongside backends using OpenMP (for CPU execution) and the CUDA programming
model (for execution on the GPU). The language is tested on the COSMO weather model
[5], achieving 1.8x (CPU) and 5.8x (GPU) speedups compared to the previous imple-
mentation. In the domain of computer graphics, [6] introduces an optimizing compiler
for the Halide image processing language. The Halide language enables the descrip-
tion of pipelines of stencils, and the compiler presented in the paper enables automatic
synthetization of optimized and parallelized code across multiple platforms, including
CUDA.

Solano-Quinde et al. address the issue of implementing computations on unstructured
grids using a GPU architecture in their 2011 paper [7]. They present a general-purpose
algorithm applicable for implementing scientific analyses in unstructured grids and name
weather modeling as one of the possible use cases. They identify occupancy and mem-
ory access as the main limiting factors of performance. Their paper also explores the
implications of using different memory layouts for the unstructured grid representation,
concluding that struct-of-array-type layouts are better suited for GPUs because of coa-
lescing concerns. Contrary to our thesis, where one dimension remains regular (providing
leeway for optimizations), a completely unstructured grid is assumed in their work. A
88% speedup compared to CPU implementations is given, but no comparisons to regular
grid implementations are drawn.

Following up in 2012, the same authors detail in [8] how further performance improve-
ments can be attained in completely unstructured applications on multi-GPU systems,
evaluating task- and data-parallel approaches for concurrent execution across multiple
GPUs.

A comprehensive overview of the various methods of how unstructured grids for
a problem domain can be generated is given by Mavriplis in [9]. Section 3.4 of the
publication also hints at how an unstructured grid may be stored in memory. In [10],
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CHAPTER 2. RELATED WORK 4

the same author details how a solver of Navier-Stokes equations can be implemented on
an unstructured mesh, using the OpenMP and MPI parallelization techniques.

Addressing a broader set of algorithmic problems, Wang et al. [11] evaluate the
performance implications of implementing several unstructured programs (including,
for-example, breadth-first search and graph coloring) on the Nvidia CUDA platform.
In general, these problems include more complicated kernel code than stencil applica-
tions, but they share the same irregular memory access pattern as is associated with
unstructured grid access. By detecting regular “pockets of parallelism”, performance
is improved. While 1.13x − 2.73x speedups compared to CPU implementations are at-
tained for some problems, an average slowdown of 1.21x across all implementations is
reported due to the added overheads.

A lot of research has been carried out concerning the compressed storage of meshes,
such as in [12] and [13]. However, most of those approaches are not usable in a sten-
cil code, where decompression has to be virtually free and reordering of values is not
permittable. However, the approach presented for compressing social network graphs
in [14] is relatively simple and similar to our evaluated compression approach in section
4.2.2.



Chapter 3

Background

In this chapter, we introduce the terms and definitions that form the basis for the rest
of the thesis. Specifically, we introduce regular and unstructured grids, stencils and
surrounding terminology (coordinates, indices, halo) in sections 3.1 and 3.2. We then
move to a discussion of parallel programming using the Nvidia CUDA programming
model 3.3, including a description of the memory hierarchy and performance metrics.

3.1 Grids
A grid partitions (tessellates) some space into a discrete number of cells. In weather/cli-
mate modeling, the three-dimensional space of the atmosphere is subdivided by a grid
to facilitate finding numerical solutions to equations governing the weather. Each cell
may contain one or multiple values (fields) such as the temperature or humidity at a
location.

One kind of grid is the regular grid. In this type of structured grid, each cell is of
uniform size and has a fixed amount of six direct neighbors (top, bottom, left, right, front,
and back). Real-life objects that have the structure of a regular grid are checkerboards
(two dimensions) or a Rubik’s cube (three dimensions). Because of their regularity,
storing such grids in memory is straightforward.

In certain use cases, the use of unstructured grids is beneficial to the requirements
of the application at hand. In contrast to regular grids, cells need not be of equal
size in unstructured grids and may have a varying number of neighbors. This means
that the location of a cell’s neighbor in memory no longer follows a regular structure.
Because neighbor’s locations are no longer inherently clear, an unstructured grid requires
a neighborship table to describe its structure. Accessing a neighbor requires an indirect
memory lookup in order to determine its location in memory.

This thesis is concerned with the performance implications that porting a stencil
computation from a regular to an unstructured grid entails. It compares the cost indirect
addressing imposes upon several different widely-used stencils.

While an unstructured grid theoretically supports arbitrary neighborship relations,
for this thesis, we restrict irregularities to the X-Y-plane and assume even unstructured
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CHAPTER 3. BACKGROUND 6

grids are regular (i.e. always have at most two neighbors) in the Z-dimension. This is a
common use case in atmospheric modeling applications. In practice, such as in so-called
icosahedral grids, most of the neighborships in the X-Y-plane will also most often have
some structure to it. We make use of these regularities in the optimizations described
in section 4 and 5.

3.1.1 Coordinates and Indices
In our implementations, cells in a grid are identified by coordinates, which relate a cell
to its real-world position and indices which give the storage location of a cell in memory.

Throughout the rest of this report we refer to the size of a grid as the maximum
number of elements in each dimension, and denote it by the vector

d =

dx
dy
dz

 .

A unique identifier for each cell on the grid is given by its coordinates, denoted in similar
fashion by a vector

p =

px
py
pz

 .

The coordinates correspond to a position in Euclidian space. Coordinates are chosen
such that each integer coordinate maps uniquely to at most one cell. The converse (i.e.
each cell has only one coordinate) is only true in regular grids: In the regular grid, direct
adjacent cells differ in exactly one coordinate by an amount of one. In unstructured grids,
not every coordinate is necessarily assigned to any cell, and one cell may span multiple
coordinates. Therefore, an unstructured cell’s neighbor might have coordinates that
differ by more than one in multiple components.

As memory is one-dimensional, a mapping from the three-dimensional coordinates
of a cell to its location in memory is required of a grid implementation. We call this
location in memory the index and denote it with the letter i. The mapping from three-
dimensional coordinate space to the one-dimensional memory index defines the memory
layout of the grid. In regular grids, this mapping is straightforward, while in unstructured
grids it may be arbitrary. How regular and unstructured grids are laid out in memory
is detailed in section 4.

3.2 Stencils
Finding approximate numerical solutions to the governing equations of physical pro-
cesses, as in meteorology, often entails performing certain unchanging calculations on
every cell of a grid. The result of this process is again a grid of similar size. For each cell,
the calculated output value is dependent only on a bounded small number of neighboring
cells’ values (neighborhood). Such a computation is called stencil. Simple stencils may
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require only the values of the current cell as well as directly adjacent (face-touching)
neighbors in order to calculate the output value, while more complex ones could also
depend on diagonal neighbors, neighbors-of-neighbors, etc. Yet, some spatial locality is
guaranteed.

Halo In stencil computations, special consideration needs to be given to the boundary
cells of the grid. Compared to cells in the grid’s interior, cells at the edges of the grid
lack some neighbors. As such, the output value of a stencil that depends on these
neighbors is undefined at the affected boundary cells. One way to address this issue is
to execute the stencil only on the safe interior of the grid, separated from the boundary
by a certain amount of padding. The amount of padding used depends on the size of
the neighborhood which the stencil requires for its computation.

We call the set of cells residing in the padding around the boundaries of the grid halo.
Stencil implementations may include a branch instruction that prevents any computa-
tions if a cell lies in the halo. Alternatively, for ease of implementation and performance,
it can be beneficial to store the halo separately in memory.

3.3 GPU Programming on the Nvidia CUDA Platform
Graphics processing units (GPUs) particularly lend themselves to stencil computations.
In this section, we contrast the execution model of classical central processing units
(CPUs) with that of GPUs. We explain why stencil applications can profit from execu-
tion on the GPU and elaborate on the fundamentals of the Nvidia CUDA platform for
execution on the GPU.

Most classical computer programs run sequentially on the CPU. Computations are
performed step-by-step. Such a sequence of operations is called thread. Early CPUs were
only capable of running one thread at a time. Even today, only a handful of threads (i.e.
execution streams) can run truly in parallel on a CPU. Operating on large data sets on
the CPU therefore still mostly involves repeated calculations within loops that handle
one data point at a time.

Most performance optimizations in CPUs target latency; caches, pipelining, branch
prediction, and similar techniques aim to reduce the time between issuing a command
and storing its result. While CPUs have become much faster since their inception, the
improvements to performance have recently slowed due to physical constraints.

Sustained demands for faster runtimes and more complex applications have thus
forced rethinking the sequential execution model. Many real-world applications on large
data sets consist of largely unvarying computations on many data points. These appli-
cations often have few sequential dependencies. Applications in computer graphics, for
example, often entail highly monotone computations that are repeated for every pixel
displayed on the screen. The resulting value of the pixel at one edge of the screen often
does not require knowledge of the result of a pixel at the other end, but sequential ex-
ecution still dictates one value being calculated before the other. GPUs overcome the
performance limits of sequential computation by providing thousands of hardware units
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which are able to compute (run threads) independently from one another, at the same
time. [15, Chapter 2] This increases the throughput of those devices: While a low-latency
CPU reacts to an issued command fast, it provides only one result for one data point.
Meanwhile, a high throughput GPU might take a longer time to issue the command, but
it calculates the results for several datapoints “at once”.

CPUs, therefore, shine in scenarios where calculations are less straightforward and
predictable, while GPUs are more useful wherever monotone computations on large data
sets are performed. Another advantage of GPUs is scalability: Because the performed
parallel computations are completely independent, larger problem sizes can effectively
be solved more efficiently simply by adding more parallel execution capabilities to the
hardware, i.e. adding more processors.

Despite the name, GPUs are today no longer just used for graphics processing. Such
computing is also called general-purpose GPU programming, or GPGPU for short.

The task of applying a stencil to a grid (sections 3.1, 3.2) greatly benefits in terms of
performance from execution on highly parallel architectures such as graphics processing
units (GPUs), as it can easily be parallelized by decomposing the problem domain. Each
thread may be responsible for calculating the result of one cell or a small set of cells
in the output grid. As data dependencies are limited to a local neighborhood, parallel
threads can work on spatially separated data concurrently without risk of data races in
most cases. Data races only occur if threads share some dependencies, i.e. when their
neighborhood overlaps. In that case, each thread can re-compute its dependencies (called
computation on-the-fly) or threads may share their results by means of synchronization.

In this thesis, we use the Nvidia CUDA architecture to implement meteorological
stencil computations on the Nvidia Tesla V100 GPU, and we assess their performance
on different types of grids.

3.3.1 SIMT Execution Model
CUDA employs a Single Instruction, Multiple Thread (SIMT) execution model. This
model can be compared to the Single Instruction, Multiple Data (SIMD) model but
makes writing programs more straight-forward to programmers experienced in sequential
programming. [16, Section 3.1]

In a SIMD model, instructions are “wide”: They support input operands that are
larger than single scalar values. Programmers explicitly issue these vector instructions
to perform a calculation on a set of values. In contrast, in the SIMT model used by
CUDA, programmers do not need to explicitly perform operations on multiple data
points. Instead, code is written such that it operates on single scalar values. Many
instances, i.e. threads, of this code are run which differ only in an input thread index
they receive as input. In most applications, this input is used to determine which data
point the thread operates on. Upon execution, when the same operation is executed in
many threads on consecutive data points, they are grouped together automatically to
be executed in parallel in SIMD-like fashion.
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3.3.2 Software
Code to be executed on the GPU is written in specially-annotated functions called
kernels. Kernels can be written as regular C code but are compiled by the distinct
Nvidia compiler (nvcc) to Parallel Thread Execution (PTX) machine code which can be
run on the GPU. Inside a kernel, a thread and block index is made available. Using a
special syntax recognized by nvcc, kernels can be launched from the CPU onto the GPU
(sometimes simply called device, as opposed to host which refers to the CPU). The CUDA
Application Programming Interface (API) provides a device synchronization routine,
which is required to synchronize CPU and GPU after the computation of the kernel
on the GPU is completed. This enables relatively simple offloading of parallelizable
workloads onto the GPU as a coprocessor while continuing to run the rest of the program
asynchronously on the CPU. The CUDA API furthermore provides routines for memory
allocation on the device, memory prefetching (see 3.3.4 unified memory), and setting
certain device parameters.

// Kernel D e f i n i t i o n . This f unc t i on runs on the GPU.
__global__
void mult ip ly (double fac , double * input , double *output ) {

int i = threadIdx . x + blockIdx . x*blockDim . x ;
output [ i ] = fa c * input [ i ] ;

}

// Kernel Invoca t ion . This f unc t i on runs on the CPU.
int main ( int argc , char ** argv ) {

double * input , output ;
int N = 1024 * 1024 ;
cudaMallocManaged(&input , N * s izeof (double ) ) ;
cudaMallocManaged(&output , N * s izeof (double ) ) ;
cudaMemset ( input , 42 . 0 , N * s izeof (double ) ) ;
mult ip ly<<<N/256 , 256>>>(3.0, input , output ) ;
cudaDeviceSynchronize ( ) ;
cudaFree ( input ) ;
cudaFree ( output ) ;

}
Listing 3.1: Example showing kernel, its launch and CUDA API calls for allocating
unified memory

3.3.3 Streaming Multiprocessors
CUDA-capable GPUs are structured as an array of so-called Streaming Multiprocessors
(SMs). Each SM contains a multitude of scalar processor cores. These cores include



CHAPTER 3. BACKGROUND 10

arithmetic, logic, and floating-point units (ALUs, FPUs) and perform the actual com-
putations on the data points. Together, they are used to advance computation in a
warp. A warp is a set of (typically 32) threads that are executed concurrently on the
same multiprocessor. In every cycle, each thread inside a warp either uses one of the
scalar cores to execute the same instruction as the other threads (on different data),
or it is turned off if a branch diverged previously. A warp of multiple threads at the
same instruction pointer executing the same instruction is therefore similar to executing
a SIMD instruction on multiple data points.

Each SM has its own scheduler and operates completely independently of the other
SMs. If the threads inside a warp diverge (because of branching instructions), the
different execution paths are executed sequentially on the SM. It is therefore paramount
to performance that kernels are written in such a way that threads in the same warp
follow the same execution path whenever possible. One way to achieve this is to ensure
branch conditions involve only the thread index divided by 32 (the warp size), as this
will be the same value for all threads inside a warp.

SMs choose the threads to form a warp from a pool of threads called a block. When
one warp finishes executing or is stalled (e.g. because of a memory dependency), the
next set of threads forming a warp in the block is chosen to be executed. All threads
in a block execute on the same SM. Resources such as registers and shared memory are
divided among all threads in a block. Threads in the same block can communicate with
one another through so-called shared memory. Using the __syncthreads() command
in a kernel synchronizes all threads in the same block.

When a kernel is launched, the programmer may specify how many threads should
be part of the same block (block size), and how many blocks there should be (grid size).
These parameters are called the launch configuration. It is important to have more
blocks than SMs, as otherwise, some SMs will have no work to perform. Furthermore, if
a synchronization instruction is used in the kernel, it is beneficial to have multiple blocks
per SM, as to occupy the SM when one of the blocks is stalling because it is waiting for
synchronization. The number of threads per block (block size) should be a multiple of
32 to ensure warps can be entirely filled with threads. [17, Section 10]

3.3.4 Memories
There are several types of memory address spaces available in kernel code. Figure 3.1
shows these address spaces in the programming model on the left, and how they are
implemented in hardware with caches in the Volta architecture on the right.

Local Memory

Local memory is an address space visible only to one thread. It is almost always phys-
ically implemented using registers. There is a limited number of registers available per
SM. Using a large number of registers in a kernel thus reduces the number of threads
that can be launched on the same SM. If necessary, registers can also be spilled to device
memory. In the Volta architecture, L2 caching occurs for those spills. In some earlier ar-
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Programming Model

Scope: Thread

Local

Scope: Block

Shared

Scope: All

Global

Constant

Texture

Hardware Memories

SM

Registers

Unified (128 KB)

Shared Memory

L1 Data /
Texture Cache

Device
Memory

L2 Cache

SM

Constant Cache

1

2

3

4

Figure 3.1: Memory Hierarchy of the Nvidia Volta architecture (compute capability
7.0). Global memory accesses are only cached in the unified L1 data/texture cache if
they are read-only. Illustration based on information provided in [18, Sections 2.3, 5.3.2,
H.6].
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chitectures, the L1 cache was also used. A spill incurs the same cost as a global memory
(defined below) accesses; spilled registers require access to L2 cache or device memory,
whereas registers are on-chip per SM and provide very low latency reads.

Shared Memory

The shared memory address space is shared between all threads in a block. It is im-
plemented locally in each SM, close to the functional units. The amount of shared
memory is limited per SM and therefore using more shared memory reduces the number
of threads that can be launched in parallel. In the Volta architecture, shared memory
competes for space with the L1 cache for global and texture memory accesses.

Bank Conflicts When using shared memory, one has to be wary of bank conflicts.
Accesses to shared memory of multiple threads can be executed simultaneously as long
as they fall into separate so-called shared memory banks. In the Volta architecture used
in this thesis, there are 32 banks. Consecutive 32-bit words are mapped to consecutive
banks. To avoid bank conflicts it is thus important that for any two threads in the same
warp, shared memory addresses accessed are coprime, i.e. for two memory accesses at
addresses i and j, i ̸= j mod 32. An exception to this rule is if all threads access the
same address, in which case a broadcast occurs.

Global Memory

Global memory is accessible by all threads across all blocks. Using the cudaMalloc() and
cudaFree() routines provided by the CUDA Runtime API it can be allocated and freed.
Note that the pointers returned by cudaMalloc() cannot be used in CPU code. Instead,
data has to be manually copied from the host to the device and vice versa using the
cudaMemcpy() function with cudaMemcpyHostToDevice and cudaMemcpyDeviceToHost
parameters, respectively.

Since CUDA version 6.0, there also exists unified memory which relieves programmers
from manually having to copy memory back and forth. Unified memory provides an
address space that is accessible from both the host (CPU) and the device (GPU). Copying
is done on-demand when data is being accessed. Therefore, when timing exclusively the
kernel runtime, switching from managed memory (with explicit memory transfers before
and after the kernel run) to unified memory could impact the measured kernel-only run
time. The overall runtime does not change, as memory has to be transferred in both
cases; the transfer simply moves from the explicit call to cudaMemcpy implicitly to the
first access to a unified memory address in the kernel.

Synchronizing the memories between host and device can also be made explicit in
unified memory using the function cudaMemPrefetchAsync(). We use this mechanism
in our benchmarks to ensure only the relevant aspects of kernel runtimes are reported,
without any distortion by memory transfers that have to take place for any kernel either
way.
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Additionally to global/unified memory, there also exist constant and texture memory.
These address spaces are also persistent across threads. Constant memory may not be
written, but provides better performance when all threads access the same address.
Texture memory is similar to global memory, but special routines in the CUDA API are
provided for accessing it. Furthermore, it is cached in a way that profits from accesses
which are spatially local in 2D.

Coalescing A paramount performance concern for memory-bandwidth-intensive ker-
nels is the pattern of global memory accesses. When all threads in a warp read consec-
utive 4-byte words, these reads are executed as one larger vector load instruction (the
accesses are said to coalesce). This enables simultaneous reading of memory for all those
threads. On the other hand, if the addresses accessed are sparse, each request has to be
serviced in series by the SM. This reduces performance drastically. Therefore a memory
layout should be chosen where data needed by different threads at the same computation
step is laid out sequentially wherever possible. If this is not doable, a solution can be
to intermediately load some data into shared memory with a coalesced access and then
distributing the needed values to the threads that need them through shared memory.
If all threads require access to the same address, constant memory may also be a remedy
for uncoalesced accesses thanks to its broadcasting capabilities.

Caches

Caching of memory accesses turned out to be a major factor in determining the runtimes
of our implemented stencils. In the used Volta architecture, there is an L1 and an L2
cache for global and constant memory accesses. The L1 cache is private to each SM and
shares its space with shared memory; using shared memory can therefore also be seen
as an explicitly managed cache. Only read-only accesses to global memory are cached
in L1, as this cache is per-SM and writes would require inter-SM synchronization. A
second, separate L1 cache services constant memory reads and writes. The L2 cache is
shared between SMs. It functions as a cache for global reads/writes as well as for local
memory spilled from registers and constant accesses missing the L1 constant cache. In
[19, Chapter 3], the latency for an L1 hit is reported at 28 cycles, and at about 193
cycles for an L2 hit. A more detailed overview of the memory structure and caches is
also given in the same paper. The right-hand side of figure 3.1 presents the caches in
relation to the virtual address spaces.

3.3.5 Performance Considerations
To understand the GPU performance of a kernel, it is important to understand the
benefits of latency hiding. Slow instructions, such as loads from memory or instructions
that depend on a previous result that is not yet available, cause so-called stalls in both
CPUs and GPUs. On the CPU, many performance optimizations target reducing the
number and the duration of these stalls (i.e. reducing latency), but when they occur,
the processor waits idly. In contrast, GPUs have the capability to hide stalls by quickly
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switching to a different warp that is not blocked, thus progressing some other useful
calculation. To analyze the performance of GPU applications we are therefore interested
in two main characteristics of the execution:

1. The occupancy describes how much work is available to the SMs on the GPU. A
high occupancy ensures other instructions are always available for the GPU to
execute in the case of stalls (latency hiding). In the ideal case, no SM should ever
be idle waiting for a stalled warp. It should execute useful work instead to achieve
high throughput. Altering the execution configuration (block size) of a kernel can
aid in improving occupancy.

2. The main reasons for stalling tell us why individual threads’ executions block.
Reducing stalls equals reducing latency. For many kernels (all stencil applications
in this thesis) memory dependencies are the main reason causing stalls. For these
types of kernels, a close look at the achieved memory bandwidths in comparison to
the maximum achievable bandwidth of the used hardware often reveals where the
deficiencies lie. For other more computationally expensive kernels, stall reasons
may include busy instruction pipelines or execution dependencies. Programs that
stall less require less occupancy to hide those stalls; knowing the reason for stalls
is thus an important guide in improving performance.

Considering these two characteristics gives an overview of what the main limiting
factors of a kernel are. Both factors influence each other; when threads never stall, SMs
always have something to execute (provided there are enough threads). Occupancy will
thus be high even if the number of issued threads is not much larger than the number
of SMs times the number of threads in a warp (32). If occupancy is low, splitting the
problem into smaller parts and increasing the number of threads and blocks may help,
but only if these threads do not all stall at the same time.

nvprof metrics

Nvidia provides a command-line profiling tool called nvprof. This tool supports collect-
ing several metrics as kernels are executed. Some of these metrics which are of particular
interest for the analyses to follow are:

Occupancy metrics
achieved_occupancy Ratio of active warps to the maximum number of warps

supported on an SM, averaged over all SMs. Higher is
better.

issue_slot_
utilization

Ratio of instructions issued on a per-core level to max-
imum hardware capability. This is more fine-grained
than the achieved occupancy, as it captures if only a few
threads per warp are active. Higher is better.
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ipc Warp-level instructions executed per cycle. If there are
many stalls, this ratio drops. Furthermore, this captures
how well the SMs are able to pipeline instruction streams
of a kernel. As pipelining is not as sophisticated as on
CPUs, simple measures such as loop unrolling may yield
better numbers here. Higher is better.

Stall reason metrics
stall_memory_
dependency

Stall reasons give insight into why threads cannot execute.
If most stalls occur due to memory dependencies, compar-
ing dram_read_throughput to the maximum value at-
tainable by the device reveals whether the kernel perfor-
mance is memory-bandwidth-bound. In memory-bound
kernels, coalescing and caching metrics are especially im-
portant, see below.

Coalescing metrics
gld_efficiency In case of bad coalescing, the device performs reads on

many values that the kernel does not actually require.
This happens if the requested data’s addresses do not
align with the bounds of a single load instruction. This
metric indicates how much of an executed read is actually
used by the kernel, and how much of the read is wasted.
Higher is better.

gld_transactions_per_
request

Reports how many memory transactions (32-byte load
instructions performed by the SM) actually had to be
performed on average per warp-level (32 threads) memory
request. Lower is better.

Caching metrics
tex_cache_hit_rate L1 cache hit rate. Each SM has its own unified L1 cache.

The texture cache is mentioned explicitly in the names
of some of these metrics because this cache has not been
unified with the global and other caches in some previous
iterations of the architecture. Higher is better.

l2_tex_hit_rate L2 cache hit rate. This cache is shared among SMs.
Higher is better.

tex_cache_
transactions

Sum of arrows 1 and 2 in figure 3.1. Absolute number of
transactions seen at L1 cache.

l2_read_transactions Arrow 3 in figure 3.1. Absolute number of transactions
at L2 cache.
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dram_read_
transactions

Arrow 4 in figure 3.1. Absolute number of device memory
reads (uncached).

global_hit_rate Arrow 1 in figure 3.1. Hit rate at L1 cache only for global
memory reads (excludes texture memory).

Verification
gst_transactions Profiling also provides a simple means of verifying the

correctness of the kernel. Checking whether the number
of global store transactions is as expected gives an indi-
cation whether the kernel is behaving as expected.

One aspect of profiling a CUDA application in specific that also must not go un-
mentioned is the just-in-time compilation of kernels. The PTX instructions stored in
CUDA binaries are not low-level machine code for the graphics card. In order to sup-
port running the same application on various platforms, these instructions are instead
compiled on-the-fly for each host program run by the Nvidia driver. It is expected that
the first execution of a kernel takes more time than subsequent executions due to this
compilation step. In our benchmarks in section 6, we, therefore, did not include the first
run of a kernel.



Chapter 4

Grid Storage Strategies

In this section, we explain different approaches for storing into memory the regular and
unstructured grids which will be used by the stencil computations in subsequent sections.
We detail considerations that need to be made when choosing memory layouts for grids,
specifically for the CUDA platform.

As indicated in section 3.1, we will use the two notions of coordinates in Euclidean
space and indices (=addresses) in memory in the following to describe how grids are
stored. Two aspects of a grid and its storage implementation must be described:

1. The way the values stored inside a cell are laid out in memory, i.e. how coordinates
in Euclidean space map to indices in memory.

2. How the neighborship relations for a cell are defined, i.e., how to find the desired
neighbor given a certain cell.

4.1 Regular Grids
Both indexing and neighborship relations are easy to determine in regular grids. Thanks
to the grid’s regularity, coordinates in combination with the dimension of the grid carry
enough information to be directly translated to memory locations.

4.1.1 Row-major Indexing
The coordinates can directly be mapped to a memory index by simple arithmetic. The
perhaps most popular way to do this is row-major indexing. This is the memory layout
many programming languages such as C use to lay out multi-dimensional arrays in
memory. The cells of the grid are indexed as follows: A cell at coordinates p receives
the offset

index (px, py, pz) = px + py · dx + pz · dx · dy.

Herein, the factors besides the coordinates are called the strides, i.e. the x-stride is 1,
y-stride is dx and z-stride is dx · dy. Only in a regular grid are the strides constant
– this is the advantage of using a regular structure. Stepping through the memory

17
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linearly, this means that the X-coordinate is the fastest-changing and the Z-coordinate
is the slowest-changing. Using this scheme, memory locality is good for cells with similar
X-coordinates, but not necessarily so for cells with similar Y- or Z-coordinates.

4.1.2 Neighborship Relations
With row-major indexing, in order to access the value of a neighbor of a cell at position p,
it suffices to know the coordinates of the cell and the strides of the grid. The indices of the
left (right), top (bottom), and front (back) neighbors are simply given by subtracting
(adding) the x-stride, y-stride, or z-stride respectively. This gives the same index as
subtracting one from (adding one to) the respective X-, Y- or Z-coordinate and then
calculating the index as described above. All that is required for accessing a neighbor’s
value are thus simple arithmetic for obtaining the index and a memory load at the
calculated index to receive the cell’s stored value.

For example, in memory, the left neighbor of a cell in memory at location i is located
at i− 1, the top neighbor at i−dx, and the back neighbor (Z-dimension) is at i−dx ·dy.
From this, it is evident that when using row-major indexing in regular grids, neighbors
in the X-dimension (left/right) will have great memory locality. However, as the grid
dimension in X- or Y-dimension exceeds beyond what the processor can hold in the
cache, accesses to neighbors in Y- or Z-direction become more costly.

4.1.3 Memory Alignment
The Cuda compiler generally ensures that data structures are well-aligned in memory
for the target architecture for coalescing accesses. However, when storing a regular grid
for later stencil applications, manual alignment calculations can become necessary due
to the halo (as defined in section 3.2).

Consider some stencil applied to a regular grid. Because of the lack of neighboring
values, a kernel will not operate on values at the boundary of the grid, the halo. The
first thread actually executing any load/store instructions will be on an inner value.
Therefore, if the halo is not a multiple of the vector load instruction size (32), some
loads at the beginning and end of each row will not be aligned. The addresses of the
halo cells are not loaded and thus wasted in the instruction.

This problem can be aleviated by adding paddings such that the first inner value
is 32-byte-aligned instead of the very first element of the array. Given a halo of size
h =

(
hx hy hz

)⊤ we want the cell at coordinate h to be aligned, not
(
0 0 0

)⊤. We
thus chose minimal paddings a, b and c and reformulate the index computation such
that

index (px, py, pz) = px + a+ py · (dx + b) + pz · (dx · dy + c) (4.1)
index (hx, y, z) ≡ 0 mod 32 for all y, z (4.2)

Note that the modulo computations are only performed upon grid generation (on
the CPU). Once the grid is stored in memory, stencils require only the chosen paddings
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a, b, c as additional inputs in order to correctly compute the memory index of a cell at
any coordinate (according to equation 4.1).

4.2 Unstructured Grids
In completely unstructured grids, memory indices are in no fixed relation to coordi-
nates. This complicates neighbor accesses. Adjacency information for each cell must be
explicitly stored, and accessing a given cell’s neighbors requires a lookup of this informa-
tion. This is contrary to regular grids, where adjacency information is implicitly known
through coordinates and grid dimensions (i.e. constant strides).

To facilitate some optimizations and more accurately model the typical unstruc-
tured grids in meteorological applications, we restrict the notion of an unstructured grid
throughout the remainder of this thesis. Specifically, we pose the following requirements
to our unstructured grid implementation and stencils operating on it:

1. Regular in Z-dimension: The grid remains regular in the Z-dimension, i.e.
the mentioned decoupling of indices and coordinates only occurs in the X-Y-plane.
Cells with equal X and Y coordinates have the same relative neighborship offsets at
all Z-levels. The Z-coordinate retains its meaning and can be used in conjunction
with the Z-stride dxdy to access neighbors in the Z-dimension. Conversely, the
Z-coordinate of a cell can be inferred from the cell’s index i, specifically pz = i
mod dxdy. Note that knowledge of the absolute Z-coordinate is not required in
stencil code, thus costly modulo operations never occur in stencil code.

2. Stencil calculations are relative to each cell: A stencil operating on a cell
only requires access to the cell’s neighbors up to some bounded depth l. Only
relative offsets to the current cell’s coordinates are accessed. Stencils applied on
our unstructured grid do not require knowledge of absolute X and Y coordinates:
given a cell at memory index i, determining its coordinates px, py is not required
in stencil (GPU) code. (Of course, the mapping is defined and must be accessible
in CPU code in order to access and display the grid values – this access is not
required to be implemented on the GPU, though.)

As with the regular grid, our implementation must define how the values (next sec-
tion) and the neighborship information (section 4.2.2) are stored. We describe certain
important considerations in the context of a SIMT application for both but focus on the
latter.

4.2.1 Memory Layout and Indexing of Cells
The inner values in our unstructured grid implementation may be stored in an arbitrary
layout. The halo cells must be stored separately from the inner values. In this separate
block of halo cells, the memory layout may also be arbitrary. In the following subsection,
we describe the considerations that were made in the context of halo storage.
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While completely arbitrary layouts for the values are possible, some patterns of
regularity will be present in most real-world use cases. Section 4.2.3 describes the two
types of memory layouts (row-major, z-curves) we simulated when benchmarking our
unstructured grid implementation.

Halo

To ensure correct results, stencils may only operate on cells where the required neighbors
for the output calculation are present. In the regular case, this is ensured by checking in
each thread that the current coordinate lies within the inner part of the grid or within
the halo. In regular grids, this is fast: coordinates can be determined from memory
indices using only arithmetic. On the other hand, a thread in our unstructured grid
implementations can not know the absolute coordinate of a cell it operates on, due to
the possibly arbitrary layout of cells and unknown (to the thread) mapping from indices
to coordinates. For unstructured implementations, a thread receives only a memory
address of some cell, for which it must compute the result. Therefore, another approach
must be taken.

One solution works as follows: The required neighborship lookups are performed in
every thread. When the desired neighbor is not present, a special value indicates this;
the program concludes at this point that the currently being operated-on cell lies in
the halo and aborts. This might happen, for example, when a thread operating on the
topmost cell asks for the index of the cell above it. Consider a neighborship storage
implementation that stores a relative offset of the index for each neighbor; in this type
of implementation, an offset of 0 is effectively a pointer to the same address/cell the
thread is already operating on. It could, therefore, be used as a special value to indicate
the required neighbor is not present.

There are two main disadvantages to this approach: First, even for cells in the halo, a
(possibly costly) memory lookup is performed before threads determine no computation
can be done. Second, due to the inactive/aborted halo-threads, there will be under-
utilized memory loads, similar to uncoalesced accesses. The considerations for coalescing
made in section 4.1.3 for regular grids do not apply here, because in an unstructured grid
with varying strides, no constant padding can be chosen to ensure coalescing accesses.

A better solution is to store the halo and inner values in separate blocks in memory.
Threads are then initiated to only operate on the inner value block. We opted to store
any cell located in the halo of the stencil in front of any of the inner values in memory.
With this approach, we can safely operate threads on the memory block of only inner
values and be sure to never encounter a halo cell. If there are several stencils with
different-sized halos to be applied to the same unstructured grid, spiralling storage of
the halo cells moving from the outwards in can even be employed. The starting address
of the first inner value then determines what is considered as inner value by the stencil.
Stencils with a smaller halo can operate on a memory block starting at a lower address,
including some cells that would lie in another stencil’s halo. However, storing the halo
at the beginning, separated from inner values, comes at the cost of a reduced memory
locality for inner cells whose neighbors reside in the halo. This cannot be avoided.
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Across all of our implementations, we employed the second approach of storing the
halo separately, in front of the inner values. As in the benchmarks, only one stencil was
applied to each grid at once, we did not use the spiraling scheme; halo cells are simply
stored in a row-major fashion, followed by the inner values.

4.2.2 Neighborship Relations
To characterize an unstructured grid, adjacency information about all cells must be
explicitly stored in memory. We store this information in what we call neighborship
tables. For clarity, we will refer to two distinct blocks of memory in the following: The
neighborship block stores information about the structure of the grid, while the data block
stores the values of the cells.

Suppose there are m types of neighborship relations (e.g. top, bottom, left and right
neighbors, m = 4), i.e. each cell can have at most m neighbors. For each relation, one
array of size dxdy is allocated in the neighborship block. Each array functions as the
neighborship table for one relation (e.g. a top-, bottom-, left- and right-array). Consider
a cell whose value is stored in an array at index i in the data block. In each neighborship
table, at offset i mod dxdy, a pointer to a neighbor of that cell is stored. This pointer
is stored as a relative offset of the neighbor from the index i.

Storing relative offsets instead of absolute pointers has the advantage that a thread
working on the value at index i does not need to know where the beginning of the data
block is; it can simply add the offset to the index. An offset of 0 signifies that the cell
at this index does not have such a neighbor.

The described neighborship tables are akin to adjacency lists [20, Chapter 12]. Con-
sider a graph representation of a grid, where nodes represent cells, and edges represent
the neighborship of two cells. Given m types of neighborship relationships (e.g. “top”,
“bottom”, “left” and “right”), we create m such graphs linking the respective neighbors
(e.g. a graph connecting all nodes with their “upper” neighbor). Each neighborship ta-
ble is the adjacency list of such a graph, where the cells are referred to by their relative
offset from the current cell in memory.

All neighborship tables are stored consecutively in memory. We allocate sizeof(int)·
m · dxdy bytes in the neighborship block to store the neighborship tables. A pointer to
the k-th neighbor of a cell stored at index i can be found in the k-th neighborship table
at index i mod dxdy. Herein, the modulo dxdy, i.e. the Z-stride, is required for memory
indices i for Z > 0 to remove the Z-component from the index.

Putting all of this together, the following equation 4.3 describes how the index (in
the data block) of the k-th neighbor in the X-Y-plane of a cell stored at index i (in the
data block) is computed. The ordering (i.e. which neighbor is the k-th) can be defined
arbitrarily, as long as it remains consistent.

neighbork(i) = i+ neigh[dxdy · k + (i mod dxdy)] (4.3)

Herein, the function neighbork(i) gives the index of the k-th neighbor of the input
cell, neigh[l] refers to the l-th element in the neighborship block (as in C), and dxdy is the
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Z-stride (i.e. dimensions of the X-Y-plane). Note that modulo calculations are expensive
operations; our optimized grid access variants (see section 5) thus avoid those by using
the three dimensions of the thread index to give an index in the X-Y-plane (which would
be the result of the modulo operation) and the Z-coordinate separately. Further note
that thanks to the regularity in the Z-dimension, neighbors in the Z-direction can be
accessed without an additional lookup by simple addition or subtraction of the Z-stride,
dxdy.

Example: Given an array values representing the data block, which stores the values
of each cell, an array neighbors representing the neighborship block, and assuming the
“right” neighborship relation is defined as the 2nd (k = 2) in the neighborship block,
then the value of the right neighbor of cell i is stored at values[i+ neighbors[2 · dxdy(i
mod dxdy)]].

The stencils benchmarked in section 6 are defined in terms of regular grids. In our
implementations, we limit each cell to have at most 4 directly adjacent neighbors. This
is the maximum number of neighbors any cell in a two-dimensional quadrilateral grid
can have. Given a grid with four neighborship types (m = 4), representing the entire
grid’s values and its structure, including neighbors-of-neighbors up to depth l ≥ 1, can
be achieved with a memory footprint of

sizeof(int) · dxdy · 2l(l + 1) + sizeof(T) · dxdydz bytes

Herein, T is the data type used for values (float or double, or a struct for array-of-
struct-type storage of multiple fields, see 4.3).

The described neighborship storage approach can be further optimized. In the bench-
marks in section 6, we will assess four variations for the described neighborship tables,
resulting from the combination of two properties:

• Chasing / non-chasing

– Chasing: Adjacency information is stored only for direct neighbors. Accessing
neighbors-of-neighbors requires pointer chasing.

– Non-chasing: Adjacency information is stored up to some depth l (as required
by the stencil). One lookup suffices to determine the index of a neighbors-of-
neighbors, but additional memory for the neighborship table is required.

• Uncompressed / compressed

– Uncompressed: The neighborship table contains one entry for each cell in the
X-Y-plane.

– Compressed: Cells with the same relative neighborship offsets share their
neighborship table entries. An additional lookup (akin to a dictionary map-
ping cells to their neighborship table entries) is required.
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Coalescing of neighborship lookups

Storing neighborship offsets in multiple separate arrays in the described manner is crucial
for on-GPU execution. It enables coalescing of the accesses to the neighborship tables.
Suppose some stencil computation, in which multiple threads desire to calculate the
output value for several cells at consecutive memory addresses. They will all require
access to the same neighboring cells at each computation step (as the exact same stencil
computation is applied to every cell). Therefore, if, for example, all threads require
the top neighbor, consecutive addresses in the top-neighbor table will be requested and
accesses will get coalesced. If, however, we had a “classical” adjacency list, where the top,
bottom, left and right neighbors were each stored together (intertwined) for every cell,
accesses by threads to the top-neighbor would be separated by a stride of four elements
(the other neighbors), thus making coalescing impossible and forcing sequential loads.
The two approaches to storing multiple neighborships are also referred to as array-of-
structs and struct-of-arrays, and are further discussed in section 4.3, where the analogous
problem for storing multiple values (fields) per cell is addressed.

Pointer Chasing

Some stencils will require neighboring cells beyond directly adjacent ones, i.e. neighbors-
of-neighbors up to a certain depth l. As described above, an entry in the neighborship
table is stored only for each neighborship relation. Accessing the neighbor of a neighbor
thus requires so-called pointer chasing: Two lookups to the neighborship tables in series,
where the second lookup location is determined by the result of the first. Due to this
dependency, such lookups cannot be performed in parallel.

To avoid the issue of pointer chasing it can be beneficial to store all neighbors-of-
neighbors up to a certain depth l in additional neighborship tables. This increases the
memory footprint but can enable faster access to neighbors-of-neighbors.

In a grid where each cell is limited to four direct neighbors, storing all neighbors
and neighbors-of-neighbors up to a depth of l requires 2 · l(l+1) pointers per cell in the
X-Y-plane.

Compression

In unstructured grids with some regular components, the neighborship tables contain
many redundant entries. In a regular subsection of the grid, the relative offsets of
all neighbors are identical for all cells. We thus consider a compression scheme for
the neighborship tables. Even though memory limits are not a constraint for any of
the benchmarked stencils, compression is interesting for performance (runtime) reasons.
This is due to caching; when many threads access the same neighborship table entries,
it is very likely those entries reside in the cache and are available much more quickly.
Several cells sharing the same neighborship table entries also leaves more room in the
cache for entries for other cells.

Yet, to be beneficial to performance, a compression scheme must be very lightweight.
Any computation required for decompression adds to the total runtime and could cancel
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the described caching advantages. We were able to improve runtimes in large grids using
the following scheme (see section 6.4.2).

Compression phase The compression phase occurs on the CPU, upon grid genera-
tion. Consider a completely regular grid stored in row-major order. Except for the halo
cells (which are stored separately), the relative neighbor index offsets are equal to the X-
and Y-strides for every cell. In principle, only one neighborship table entry per neigh-
borship relation would thus suffice to encode the strides. In unstructured grids, multiple
of these patterns of neighborship relations may occur if there are regular components.
Our compression works by grouping together such patterns of neighbor index offsets.

The structure of the grid is described by m-tuples of neighborship offsets o =
(o1, . . . , om) for each cell, wherein ok is the offset of the k-th neighbor of the cell. In
the compression phase, we create a new pattern for each unique such tuple of offsets o
encountered. The offsets for each pattern are stored exactly once in the neighborship
tables. All offsets for one pattern reside at the same pattern index in the neighborship
tables. An additional array pattern of size dxdy is allocated. This array provides a
mapping from each cell (cell index) to its corresponding pattern (i.e. the index in the
neighborship tables).

Stencil phase During the stencil computation, a thread operating on a cell with index
i looks up the pattern of its neighborships by reading pattern[i mod dxdy]. (The opti-
mized access strategies seperate the X-Y-component in the index i from the Z-coordinate
and as such do not require the modulo computation in their actual implementation.) For
any subsequent neighborship lookup, the neighbor pointers are read from the neighbor-
ship tables using the previously obtained index from the pattern array. The previously
described equation 4.3 for neighborship access is altered to the following:

neighbork(i) = i+ neigh[dxdy · k +

pattern lookup︷ ︸︸ ︷
pattern[(i mod dxdy)] ]︸ ︷︷ ︸

(hopefully cached) neighbor lookup

(4.4)

Compare this to the uncompressed variant: there, the initial lookup of patterns is
skipped, and neighborship tables are accessed directly at i mod dxdy. In the uncom-
pressed case, each entry in the neighborship table is only relevant to one cell, and only
accessed by one thread per Z-level. In contrast, if compression is effective, there will
be relatively few patterns, and the same few neighborship table entries will be accessed
by many threads. We anticipate that those few neighborship table entries will reside
in the caches due to their large number of accesses. We note that compression adds
one indirect lookup (pointer chasing through the pattern array). For this scheme to be
effective at reducing the runtime, the positive effect due to caching of the second lookup
must outweigh the cost of the required additional pattern lookup.

It appears to be unavoidable to have the dxdy-sized pattern array if the complete
flexibility of an unstructured grid is to be retained. But, thanks to compression, this
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Storage Compression Constant Memory Runtime
row-major - - 814µs
row-major ✓ - 553µs
row-major ✓ ✓ 524µs
z-curves - - 770µs
z-curves ✓ - 562µs
z-curves ✓ ✓ 639µs

Table 4.1: Effect of using constant memory applying the Laplace-of-Laplace stencil on
a 512 × 512 × 64-sized grid with 256 × 1 × 1 threads. Using constant memory gives a
slight 5% advantage in the highly regular row-major grids; for the more realistic z-curve
scenario, it results in a slowdown of 14%.

should most likely be the only array whose entries are solely relevant to one cell per
Z-level; neighborship table accesses should concentrate around a few relevant entries.

Using Constant Memory For uncompressed neighborship accesses, coalescing ac-
cesses can be easily attained because the access pattern is known beforehand. In the
compressed case, the accesses depend on the result of the pattern lookup. Multiple
threads often access the same neighborship table entries. This is not optimal for co-
alescing. For broadcast-type accesses, i.e. when all threads access the same address,
constant memory is better suited. Constant memory provides broadcasting capabilities,
but its separate L1 cache is smaller in the Volta architecture. We experimented with
storing the neighborship tables in constant memory. The pattern array remained in
regular global memory, as the coalescing problems do not apply there (every thread
accesses its own entry, no interference). While, for the very regular grids with an exact
row-major layout, this yielded a small speedup around 5%, it turned out to be much
slower for more varied data layouts, such as a z-order curves layout (slowdown around
15%). Because the latter is much more realistic in a real-world unstructured grid use
case, we opted not to use constant memory in our final implementation of compression.
Table 4.1 shows the effects of using constant memory on one exemplary stencil.

4.2.3 Indirect Addressing Overhead
In our benchmarks (see section 6), we compared the performance of stencils on regular
vs. unstructured grids. To ensure a fair comparison, it was important to be able to
produce and verify the exact same output for both the regular and the unstructured
grids. This was only possible by “emulating” an unstructured grid; we took the regular
grid as a base, and then also represented it as if it were an unstructured grid, i.e. created
a neighborhsip table for it and used indirect addressing in the stencils. This enabled
us to capture the overhead of indirect addressing with otherwise unchanging conditions.
Note that even though we benchmarked a grid with completely regular neighborships
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Figure 4.1: The different memory layouts described. The blue lines illustrate the order
in which the cells in the X-Y-plane of the grid are stored in memory. The lowest memory
index always starts at the top-left corner. Left: Row-major indexing. Middle: Normal
z-order curve. Right: Widened z-order curve.

in the unstructured case, this knowledge was not made use of in the optimizations of
the unstructured grid – as they stand, the implemented programs would also support
completely arbitrary unstructured grids in two dimensions.

In these emulated unstructured grids (essentially regular grids using indirect address-
ing), we stored the same values as in the regular grid using two layouts: row-major (as
in the regular grid case) and a variation of Z-order curves (referred to in the remainder
of this thesis in short as z-curves). Note that the Z in “Z-order curves” refers to the
shape described by this memory layout, not to the Z-dimension of our grid. We only
use the described memory layouts to store two-dimensional planar slices of our grid.

The memory layout of the emulated unstructured grid using a row-major layout is
almost identical to the one for regular grids. The only difference lies in the different
handling of the halo values, which is done as described in section 4.2.1.

Z-order curves [21] represent a more realistic unstructured scenario. A variation of
this layout might be used to represent a true unstructured grid with some irregularities.
The aim of Z-order curves is to give most cells with close X-, Y- and Z-coordinates close
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indices. Locality is achieved by intertwining the bits of the X- and Y-components of a
coordinate, starting with the X-coordinate at the least-significant bit. The middle graph
in figure 4.1 shows a Z-order curve. Observe how the blue line representing the order
of memory indices seldom makes large jumps, meaning points that are close in physical
space remain close in memory. Compared to the row-major layout (left in that figure),
this is a big improvement in locality.

Consider a two-dimensional coordinate, wherein both components are given as a bit
string of even length n as:
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px py
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The index in Z-order curve ordering is then given by:

i =
⟨
p(n)y p(n)x p(n−1)

y p(n−1)
x · · · p(2)y p(2)x p(1)y p(1)x

⟩
(4.5)

In this thesis, we have implemented a memory layout which uses a modified Z-
curve layout in the X-Y-plane. To make use of CUDA’s vector instructions, which can
consume up to 32 bytes of consecutive memory at once when properly aligned, the Z-
curve implemented is a stretched out variant. The last five bits are not intertwined.
To ensure the indices are dense, the cells are then ordered by the number obtained due
to this intertwining and are indexed in a consecutive manner from lowest to highest
intertwined number.

Using this, we get repeated lines of 32 cells that share their relative neighborship
offsets with other such lines; this allows better-coalesced accesses. Using a width of 32
ensures that coalescing is possible even for one-byte data types; when using four- or
eight-byte floating-point types, the width could be reduced. We briefly experimented
with smaller stretchings of the Z-curve and observed only minimal differences in runtimes.
In the z-curves layout, neighborship offsets are more varied than in a row-major layout,
rendering both compression and coalescing less efficient. This is thus a more realistic
and useful scenario for modeling a real unstructured grid.

Using a truly arbitrary, randomized memory layout was also considered, but not
pursued further after initial tests. In grids with a randomized layout, cache locality was
completely destroyed, leading to runtimes around eight times the row-major or z-curve
variants. For example, the Laplace-of-Laplace stencil described in section 6 completed
in around 814µs for a row-major layout, whereas it took 6999µs in a completely random
layout in otherwise identical conditions. However, such a completely random memory
layout is highly unrealistic. Even in real unstructured meteorology applications, large
portions of the grid would remain regular. Unstructuredness only occurs in boundary
areas, e.g. between areas of different resolutions. Evaluating the performance impli-
cations of a completely random layout provide little value to the implementation of
meteorological stencils and possible optimizations would be very limited.
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Benchmark Run Time Load Efficiency
Array of Structs 8282µs 25.73%
Struct of Arrays 2546µs 99.39%

Table 4.2: Comparison of run times and global load efficiency (ratio of requested loads
to performed loads; bad coalescing leads to more loads being performed than needed)
for the fast waves benchmark with domain size 512× 512× 64 (block size 128× 1× 2).

4.3 Representing Multiple Fields
Two of the three benchmarked stencils and most real-world applications perform cal-
culations that require more than one input value per cell in the grid. There are two
obvious approaches to storing multiple fields for both regular and unstructured grids,
array-of-structs and struct-of-arrays.

Array of Structs In the array-of-structs memory layout, all fields for one cell are
stored together, before any values for the next cell. This means that accesses to different
fields of the same cell have good memory locality, whereas accessing the same field of
different cells requires larger strides.

Struct of Arrays In the struct-of-arrays layout, there are k arrays for k fields. This
is conceptually the same as having k different one-field grids. Different fields of the same
cell are stored in separate arrays and are thus separated by (at least) the size of one
array. This approach requires additional care to keep the indices for cells synchronized
across all arrays; deleting or adding a cell requires access to all k arrays.

The struct-of-arrays approach is highly beneficial to most GPU stencil implemen-
tations because of coalescing. When a stencil is implemented such that each thread is
responsible for the calculation of one output value, all threads will most likely try to
access the same field on different cells concurrently. In the struct-of-array layout, these
accesses are able to coalesce (if the cells appear consecutively in memory). Because of
this, we have implemented all our benchmarks in this fashion, i.e. as multiple one-field
grids. To verify the claim that array-of-structs is slower than struct-of-arrays, we have
implemented both variants for the fast waves benchmark, see table 4.2.

However, in the struct-of-arrays approach, cache locality might suffer from the large
strides between the fields of a cell. It might be desirable to load the other fields into the
cache when one field is accessed. In this approach, however, only identical fields from
other cells are close and thus loaded in the cache. A compromise that seeks to combine
both the caching advantages of array-of-structs and the coalescing of struct-of-arrays is
the array-of-structs-of-arrays approach. In this approach, one array stores structs for
warp-sized blocks of cells. These structs then implement struct-of-arrays field storage
for a subsection of the grid, i.e. each struct contains warp-sized arrays for each field. We
have not implemented this.
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Grid Access Strategies

In a stencil, computation of the output value of one cell requires access to a neighborhood
of cells. Accessing a cell’s neighbor’s value entails determining the memory index of
the desired neighbor. For structured grids, this task involves only arithmetic. For
unstructured grids, neighbor access in the X-Y-plane requires an additional memory
lookup. This is not necessary for neighbors in the Z-direction, as the grid is regular in
this direction.

In this chapter, we describe how stencils can obtain the index of required neighbors
and access the grid in optimized ways.

5.1 Naive Grid Access and Index Variables
5.1.1 Naive
In the naive grid access approach, one thread is mapped to each output cell (total of
dxdydz threads). The indexing and neighborship calculations (including the memory
lookup required for unstructured grids) are (re-)performed each time a cell’s value is
accessed in a stencil. One inefficiency of this approach is that most stencils require the
same neighbors multiple times in different parts of their calculations. Even though the
structure of the grid does not change, the indexing calculations are redone in the naive
approach on every neighbor access.

5.1.2 Index Variables
The index variables approach (idxvar for short) addresses the issue described for the
naive approach. There is also one thread per output cell. In this variant, in the first
phase of the kernel, all required neighboring cell’s indices are determined and stored
in variables. These index variables are then used whenever a neighboring cell’s value
needs to be accessed. This ensures that indexing/neighborship operations (including
lookups) are only performed once, even if the same cell is accessed multiple times within
one thread. The additional index variables potentially increase the register usage of the

29
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kernel, but they reduce the number of expensive memory lookups into the neighborship
table if the same neighbors are re-accessed within the same kernel.

5.2 Optimizations Making Use of the Z-Regularity
5.2.1 Index Variables + Shared Memory
In this approach (shared for short), the stencil is implemented such that there is one
thread per output cell (as in naive and idxvar). However, not all threads perform the
neighbor index lookups. Instead, for each cell in the X-Y-plane, one designated “leader”
thread in each block performs the index calculation for all required neighbors (at the
Z = 0 level). A thread is a leader if the Z-index modulo the Z-block-size is zero, i.e.
it has the lowest Z-coordinate of that block. After the lookup, the designated leaders
store the required neighbor indices in shared memory. At this point, all threads in the
block synchronize. All threads then access shared memory to obtain the required indices.
They add the appropriate constant Z-stride to obtain the index of the neighbors at their
respective Z-level. Using this approach, the regularity of the grid in the Z-dimension is
exploited; only one global memory lookup for the neighborship information per block is
performed. The shared memory lookups are cheaper than lookups in global memory, but
synchronization adds some overhead. For this approach to be effective, the block size in
the Z dimension needs to be large enough, and certainly larger than one (otherwise, all
threads are leaders).

Bank Conflicts

As mentioned in section 3.3.4, bank conflicts occur in the Volta architecture when two
threads try accessing addresses that are equal modulo 32. Bank conflicts have to be
avoided in order to make use of the full performance of shared memory.

A thread in the shared access strategy stores or reads multiple shared memory slots
(one for each neighbor the stencil requires). Assume we store neighborship information
of each cell contiguously in shared memory. If the total number of required neighbors
is very unfortunate, for example 8 neighbors per cell (equals an array of 32 bytes), then
all threads end up (trying to) access the same memory bank simultaneously in the index
lookup phase. This happens because the length of the neighborship array happens to
align all top neighbors of cells into one bank, all left neighbors into another bank, etc.
In the index lookup phase, all threads then attempt to load their top (left, ...) neighbor
pointer at the same time.

In the shared access strategy we address this problem by adding padding to the
shared memory storage of neighbors. Thus, neighbors are not stored contiguously, but
have gaps in between them. The padding is chosen as the smallest value such that the
padded array length is coprime with 32. This guarantees the least possible number of
bank conflicts; pointers to the same type of neighbor are spread out evenly across banks
for different cells. In other words, all top neighbors are spread evenly across banks, all left
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Block size Variant Runtime
128× 1× 8 Shared memory 684µs

Warp broadcasting 737µs

32× 1× 8 Shared memory 675µs
Warp broadcasting 693µs

1× 1× 32 Shared memory 13654µs
Warp broadcasting 12711µs

Table 5.1: Median runtimes (20 runs) for the Laplace-of-Laplace benchmark (z-curves
memory layout, pointer chasing, uncompressed) for three select block sizes. We observe
that warp broadcasting is only faster than shared memory in the last block size config-
uration, which is the slowest overall. We therefore did not further investigate the use of
warp broadcasting.

neighbors are spread evenly across banks (but may coincide banks with top neighbors,
because those are not accessed at the same time instant), etc.

Warp Broadcasting

Loads and stores to shared memory produce some overhead. A more lightweight alter-
native provided by the CUDA model are so-called warp-level primitives. Those allow
threads that are within the same warp to exchange data more efficiently – in a direct
register-to-register fashion.

We briefly experimented with a variant of shared strategy, using warp broadcasting
instead of shared memory. In this variant, all threads in the first lane (first thread of
each warp) are the designated leader threads that do the actual neighbor lookup. Other
threads in the same warp receive the leader thread’s neighbor indices by use of the
__shfl_sync() method.

While the actual warp broadcasting is more lightweight than shared memory, it
is also more limited: only threads within the same warp can exchange data. This sets
restrictions on the kernel launch configuration; the threads in a block have to be allocated
such that cells across different Z-levels fall within the same warp (otherwise no neighbor
pointer sharing can take place). To make use of warp broadcasting, some additional
calculations also need to be made (determining the lane ID, masks of active threads). For
those reasons, warp broadcasting appeared to be slightly slower than the shared memory
access variants in most realistic scenarios. In launch configurations with many threads
in the X- or Y-dimension, warp broadcasting even was considerably slower (due to no
sharing being possible within warp limits anymore). However, in launch configurations
with many threads in the Z-dimension, warp broadcasting slightly outperformed shared
memory. These launch configurations are rather slow overall (compared to other block
sizes), though, and are therefore not very useful. We thus did not further investigate
warp broadcasting use.
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See table 5.1 for a comparison of the warp broadcasting approach to using shared
memory on an exemplary benchmark.

5.2.2 Index Variables + Z-loop
In this approach (z-loop for short), there are only dx · dy threads, i.e. only one thread
per pillar of cells with equal X- and Y-coordinates. In a loop over all Z-levels, a thread
calculates the results for all cells with equal X- and Y-coordinates (hence the name).
The indices of all required cells at the z = 0 level are stored in index variables before the
start of the loop. The regularity of the grid in Z-direction enables us to update the index
variables in each iteration of the loop by simply adding a Z-stride. There is no memory
lookup into the neighborship table inside the loop. Thus, even in the unstructured grid
case, neighborship table lookups are only necessary once before the loop. This comes
at the cost of possibly reduced occupancy, however, as there is a lower total number of
threads.

5.2.3 Index Variables + Sliced Z-loop
This variant addresses the issue of low occupancy in the above approach. It is practically
identical to it, but splits the Z-loop up in smaller chunks. There are dx · dy · dz

m threads,
where m is the number of output cells in the Z-direction a single thread should calculate.
In the following benchmarks, we used m = 8.



Chapter 6

Benchmark Results

In this section, we seek to determine the overhead that indirect addressing imposes
on unstructured grids compared to regular grid runtimes, and assess the effectiveness
of our optimized approaches. We do this by implementing three real-world stencils,
called Laplace-of-Laplace (laplap), horizontal diffusion (hdiff), and fastwaves, using our
previously described methods for grid access and grid storage (see sections 5 and 4). We
use key profiler metrics to better understand what causes the differences in performance.

Real-world stencil applications are applied in a multitude of different scenarios: prob-
lem domain sizes, precision requirements and properties of the stencils vary. In combi-
nation with the various grid access and grid storage methods we described, this leaves a
large number of combinations to be tested. In our benchmarks, we assessed the perfor-
mance impact of the following properties:

• Input/output conditions

– Domain size (size of the input and output grids)
– Required precision (single or double floating-point number precision)

• Stencil properties, such as the depth and number of neighbor dependencies, the
number of input and output fields (number of different values stored in a cell) and
the arithmetic intensity

• Kernel launch configuration: number of threads, blocks, and bytes of shared mem-
ory

• Implementation of stencil, i.e. the used grid access scheme

• Grid storage implementation properties

– Memory layout and potential regular patterns in grid structure
– Memory layout of neighborship storage

* Depth of stored neighbor pointers (pointer chasing vs. non-chasing)
* Compression of neighborship table

33
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Stencil Neighborhood Fields Arithmetic Intensity
X Y Z

Laplace-of-Laplace
(laplap) (-2, 2) (-2, 2) 0 1 Add., Mult., Sub.

Horizontal Diffusion
(hdiff) (-2, 2) (-2, 2) 0 2 Add., Mult., Sub.,

Branches

Fastwaves (0, 1) (0, 1) (-1, 1) 9 Add., Mult., Sub., Div.,
Branches

Table 6.1: Stencil characteristics. The neighborhood is given as an interval around
the coordinates of a cell, i.e. (−2, 2) means neighbors-of-neighbors are required for
the stencil output calculation. The stencils are listed by their regular grid runtime in
ascending order. Note that the fastwaves stencil is the only stencil with dependencies in
the Z-dimension, has the highest arithmetic intensity, and accesses the biggest number
of fields.

6.1 Setup and Benchmarked Stencils
The three benchmarked stencils represent real-world use cases in meteorology. Table
6.1 details the values of the main stencil characteristics (those listed in the second main
bullet point above). Note the increasing complexity and number of fields required from
the laplap to the fastwaves stencil. Also note that the fastwaves stencil, otherwise the
most complex, does not require access to neighbors-of-neighbors.

The calculations performed by the stencils are defined in terms of a regular grid. All
three stencils require neighborships as in regular grids (top, left, bottom, right, front,
back). To measure the cost of using an unstructured grid, we represent the same regular
grid in an unstructured fashion, using two memory layouts, row-major and z-order-
curves (see section 4.2.3). This can be thought of as emulating an unstructured grid.
Even if the grid structure is entirely regular, we store and access it in the same fashion
as we would for a truly unstructured grid in the unstructured benchmarks. Retaining
regularity even in the unstructured representation is required to maintain comparability
of the results of the unstructured variants with the regular variants. We note that this
approach to benchmarking might fail to capture some effects of real unstructured grids
with actual irregularities.

For all stencils, we created several variants; for each of the grid access optimizations
described in section 5 we implemented a separate CUDA kernel. During the implemen-
tation process, the results of each of those variants are verified against an unoptimized
reference implementation of the stencil running on the CPU to assure the correctness
of the results. In all variants, the implementation of the actual output calculations (as
per stencil definition) remains completely unchanged. Only the portions of code respon-
sible for index calculations/lookups (for neighborship access) are swapped out. This
is achieved by using C preprocessor macro definitions in all places where indexing or
neighborship access is required. The macro definitions are then redefined in each variant
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to either use direct or indirect addressing for the regular and unstructured grids, respec-
tively (with further variations for non-chasing/chasing and compressed/uncompressed
neighborship tables).

The stencils were benchmarked on an Nvidia Tesla V100 GPU. This GPU implements
the Volta architecture by Nvidia with compute capability 7.0. The reported run times
are the median of 20 timed kernel runs. Before the first one of the timed kernel runs, an
untimed warm-up run is performed (see the last paragraph section 3.3.5 for the reasoning
behind this). The GPU is reset using an API call to cudaDeviceReset() between each
run to flush caches and to free device memory from previous runs. The grid values and
neighborship relations (for unstructured grids) are stored in unified global memory and
are pre-transferred to the GPU and back to the host (cudaMemPrefetchAsync()) before
respectively after the kernels are run. Memory transfer from host to device and back is,
therefore, not part of the reported run times.

6.2 Overview of Results
Overall, we observed slowdowns around 1.5x, 1.3x and 1.05x compared to fastest regular
grid performance for the laplap, hdiff and fastwaves stencils, respectively. Figure 6.1
shows an overview of the overhead for all tested combinations of storage and access
strategy on a large grid of size 512×512×64. Table 6.2 lists the fastest access strategy, the
runtimes and the overheads for the three stencils in all possible storage configurations.
For different domain sizes, see section 6.6. We chose to display the results for a z-
curve layout, but results for the row-major benchmarks are similar. The fastest launch
configuration is plotted for each bar; for a more detailed analysis of what block sizes are
beneficial to the different access strategies, see section 6.5. A more in-depth analysis of
the different storage and access strategies is given in sections 6.4 and 6.3 respectively.
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Figure 6.1: Overview of runtimes for all tested stencil implementations. The various
grid access strategies implemented are represented as categories (colors of the bars), while
the used data structures for the neighborship table (grid storage strategy) are shown as
groups of bars on the X-axis. We report the median value across 20 runs, using the
fastest respective launch configuration for each bar. The grid size is 512× 512× 64 and
the z-curves memory layout is used for the unstructured grids in this example. The
input and output values are double-precision floating-point numbers.
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Laplace-of-Laplace Stencil
Storage (1) (2) Access Strategy Runtime Slowdown
regular grid baseline index variables 353µs -
row-major ✓ ✓ index variables 512µs 45%
row-major - ✓ index variables 515µs 46%
row-major ✓ - sliced z-loop 582µs 65%
row-major - - sliced z-loop 608µs 72%
z-curves - ✓ naive 528µs 50%
z-curves ✓ ✓ index variables 532µs 51%
z-curves ✓ - z-loop 546µs 55%
z-curves - - z-loop 603µs 71%

Horizontal Diffusion Stencil
Storage (1) (2) Access Strategy Runtime Slowdown
regular grid baseline index variables 546µs -
row-major - ✓ naive 683µs 25%
row-major ✓ ✓ index variables 731µs 34%
row-major ✓ - index variables 804µs 47%

shared (tie) 804µs 47%
row-major - - naive 845µs 55%
z-curves - ✓ naive 710µs 30%
z-curves ✓ ✓ index variables 741µs 36%
z-curves ✓ - index variables 820µs 50%
z-curves - - shared 841µs 54%

Fastwaves Stencil
Storage (1) (2) Access Strategy Runtime Slowdown
regular grid baseline naive 2298µs -
row-major - naive 2400µs 4.4%
row-major ✓ naive 2433µs 5.9%
z-curves - naive 2426µs 5.6%
z-curves ✓ naive 2438µs 6.1%

(1) Pointer Chasing? (A checkmark means that only directly adjacent neighbors are
stored and pointer chasing occurs for neighbor-of-neighbor access. No checkmark
means neighbors-of-neighbors are explicitly stored in the neighborship tables.)

(2) Compressed? (A checkmark means the neighborship table was compressed by
having all cells with identical relative neighbor offsets share their entries. This
requires an additional lookup.)

Table 6.2: Fastest access strategy for all grid storage options. Z-curves and row-major
refer to the memory layout of the values of the grid, whereas chasing/non-chasing and
compressed/uncompressed are properties of the neighborship table. The runtimes are
the median of 20 runs using the fastest respective launch configuration per benchmark.
The slowdown is relative to the fastest regular grid implementation. The stencils were
executed on a 512× 512× 64-sized grid of double-precision floating-point numbers.
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Metric naive idxvar
Run time 2438µs 2543µs
Global load transactions 126, 264, 460 124, 235, 165
L1 transactions 38, 077, 396 34, 593, 863
L2 transactions 56, 635, 611 57, 264, 861
Device Memory transactions 36, 825, 619 37, 327, 310
Executed Instructions Per Cycle 0.522 0.497

Table 6.3: Selection of metrics for the fastwaves stencil run on a 512 × 512 × 64-sized
unstructured grid (z-curves memory layout with double precision, compressed and chas-
ing neighborship table) with 32× 1× 8 threads, which is the fastest block size for both
displayed access variants. The naive implementation is faster, even though it redoes the
index lookups in the neighborship tables. The total global transaction count shows that
the idxvar variant does reduce the number of lookups performed. However, the cache
transactions (L1 and L2) indicate that the naive variant keeps cache contents fresher,
which results in more cache hits. This is evidenced by the lower number of actual device
memory reads in the naive approach, even though more memory is requested than in
the idxvar approach.

6.3 Effect of Access Strategy in Stencil Implementation
Before benchmarking, all stencils had to be reimplemented in a way that supports un-
structured grids. In this section, we explore the performance implications of the access
variants described in section 5, starting from the naive variant and moving to the con-
trived optimizations.

6.3.1 Naive and Idxvar Access Strategies
The naive strategy was the first we implemented. At each neighbor access in the refer-
ence regular-grid-stencil, an indirect lookup into the neighborship table is inserted for
the unstructured variant. As such, this implementation performs repeated redundant
lookups for the same neighborship table entries if the same neighbor is accessed multiple
times in one thread. Our initial tests occurred on a 512 × 512 × 64-sized grid (uncom-
pressed, chasing, row-major), and using naive access strategy, we observed slowdowns
of 2.07x, 1.54x and 1.044x (compared to the fastest regular implementations) for the
laplap, hdiff and fastwaves stencils, respectively.

We then moved to a straightforward optimization, the idxvar variant. This ap-
proach tries to eliminate redundant lookups by storing the needed neighborship indices
in temporary variables at the start of the kernel execution. In the 512 × 512 × 64 grid
(uncompressed, chasing, row-major), this reduced the overheads to 1.77x and 1.47x for
the laplap and hdiff stencils.

Comparing the naive and idxvar strategies to the more optimized variants (discussed
below), we observed that caching of neighborship table entries plays a paramount role
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in unstructured stencil performance. We discovered that neighborship table lookups
become fairly efficient once cached. Due to their simplicity and efficient cache use (at
the right block sizes), the naive and idxvar access strategies are thus generally among
the fastest for all three stencils, even though (or because) they do not implement any
advanced intricacies.

Surprisingly, for the grid described above, using the idxvar strategy with the fast-
waves increased the overhead to 1.068x (from 1.044x in the naive approach). As we later
experimented with different grid storage strategies, such as non-chasing, compressed
grids, the idxvar strategy also turned out to not always be beneficial.

There are two likely explanations for the occasional advantage of the naive variant:
First, reading the same memory location a second time becomes almost as cheap as
register access after it has been read for the first time, as it will be held in the L1 cache.
Reaccessing the same memory location increases its chances of remaining in cache. As
such, when a different thread requires the same memory location from the neighborship
table, it is more likely to be in cache in the naive variant due to its larger number of
accesses.

Second, the naive approach has better instruction-level parallelism. Because the
index variables are assigned at the start of an idxvar thread, all neighborship table loads
must be executed before anything else. Output calculations may only start once all
required neighborship pointers are loaded. In the naive approach, on the other hand,
neighborship pointer reads are not gathered at the beginning of the kernel. Instead,
they are (re-)loaded at every point they are required in calculations. Thus, after one
(or a few) neighbors have been loaded, useful intermediate calculations may already be
performed, thus hiding some latency. Table 6.3 details profiler metrics that support
these claims.

6.3.2 Z-loop and Z-loop-sliced Access Strategies
The next obvious step was to try to make use of the Z-regularity of the grid. By loading
the neighborship pointers once and reusing them for multiple Z-levels, we hoped for
further improvements in runtime.

However, for the hdiff and fastwaves stencils, the two z-loop access strategies perform
noticeably slower than the other available access strategies, across all tested grid storage
configurations. The same is the case for the laplap stencil for compressed grids. The one
exception is the laplap stencil on an uncompressed grid: In this case, the z-loop access
strategy is the fastest.

The hoped-for advantage of the two z-loop access strategies is the reduced number
of required neighborship table reads. Indeed, the number of reads to device memory is
greatly reduced using this access strategy in all stencils (more than halved for laplap, 56%
for hdiff ). In the case of the computationally simple laplap stencil on an uncompressed
grid, this reduced number of reads pays its dividends; the z-loop access strategy is the
fastest for this specific benchmark.

For other stencils (and the laplap stencil in compressed grids), however, using the
z-loop access strategy is slower than all the alternatives. We assume that this is due
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Stencil Access achieved_
occupancy

ipc dram_read_
transactions

laplap idxvar 0.947077 0.812799 11, 946, 136
z-loop 0.407226 0.515881 4, 715, 455
z-loop-sliced 0.421727 0.638366 4, 729, 444

hdiff idxvar 0.935448 0.793701 16, 606, 211
z-loop 0.363111 0.481847 9, 330, 226
z-loop-sliced 0.301747 0.600179 9, 354, 882

Table 6.4: Relevant metrics for the comparison of the z-loop and idxvar access strate-
gies, on a 512 × 512 × 64-sized grid (z-curves memory layout with double precision,
uncompressed and chasing neighborship table) with 64 × 2 × 1 threads. Observe that
the z-loop strategies effectively reuse neighborship pointers, leading to a lower number
of device memory transactions, but suffer from a much lower occupancy and fail to use
the full parallel computing capabilities of the GPU.

to the much lower (compared to other access strategies) occupancy of this loop-based
access strategy. In the more computationally complex stencils, many latencies in the
result computations may occur. To hide those latencies, a large number of threads are
required. In the z-loop access strategy, sequential processing of all elements with the
same X- and Y-coordinates is prescribed by the code – hindering parallel execution
on the GPU. Presumably, this is less of an issue in the laplap stencil due to its more
simplistic result computation and fewer fields, which leads to fewer stalls in need of
latency hiding.

In the z-loop-sliced variant, we tried to address some of the low-occupancy issues by
splitting the loop into smaller, parallelizable chunks. This approach tries to combine the
best of both worlds: Reuse of neighborship table reads in a loop and more parallelism
thanks to more threads. While the performance does improve in comparison with the
z-loop access strategy (confirming our theory that occupancy is indeed the bottleneck),
it still falls short of the other access strategies due to the added overhead of managing
a loop (which requires additional registers and a branch).

Table 6.4 shows the relevant metrics of the described observations for an exemplary
benchmark run.

6.3.3 Shared Access Strategy
As both the z-loop and z-loop-sliced variants had issues with occupancy, we explored the
use of shared memory to pass neighborship information among cells that share the same
neighbor offsets. This allows exploiting the Z-regularity of the grid while maintaining a
large number of threads.

The performance of the shared variant varies strongly depending on the type of stor-
age of the neighborship tables (i.e. storage strategy) – specifically, whether compression



CHAPTER 6. BENCHMARK RESULTS 41

Metric idxvar shared
tex_ cache_ transactions 29, 962, 684 26, 589, 268
shared_ load_ transactions 0 5, 666, 573
dram_ read_ transactions 9, 362, 526 9, 355, 089

Table 6.5: Number of transactions for the idxvar and shared access strategies at var-
ious levels of the memory hierarchy for a benchmark of the hdiff stencil (grid of size
512×512×64, z-curves memory layout with double precision, uncompressed and chasing
neighborship table) at 64 × 1 × 8 threads per block (optimal for both access strate-
gies). Many L1 cache hits (tex_cache_transactions) in the idxvar strategy are simply
shifted to equally performant shared memory hits (shared_load_transactions) in the
shared strategy. The number of reads encountered at device memory is similar, further
indicating that shared memory usage simply serves as an explicit, manually managed
cache, taking the same role as the L1 cache in the idxvar access strategy.

for the neighborship tables is used or not.
In all scenarios with uncompressed neighborship storage, the shared access strategy

performs almost identically to the idxvar approach. A very slight overhead is observed for
the shared access strategy due to the required thread synchronizations. In this variant,
the neighborship pointers loaded into shared memory appear to take the same role as the
L1 cache. Thus, the shared access strategy can be viewed as maintaining an explicitly
managed cache. In fact, as mentioned in section 3.3.4, shared memory and the L1 cache
share the same physical memory. Table 6.5 further evidences how the L1 cache is simply
shifted to shared memory when using this scheme.

As we later discovered in our experiments with different grid storage strategies, grids
stored using a z-curves, non-chasing and uncompressed approach stand out in the shared
access strategy, as this is the only configuration in which the idxvar scheme is slightly
outperformed. With the aforementioned storage properties, explicit management of the
unified L1/shared memory provides a minor benefit. This is probably due to the very
large number of neighbor pointers in this storage strategy.

When using compressed neighborship tables, the shared access strategy is noticeably
slower than the idxvar strategy. As there are relatively few neighborship pointers in
compressed tables, those remain in L1 cache in the idxvar variant permanently. In
the shared variant, those same (few) pointers must be explicitly (re-)loaded into shared
memory for each thread block, which is less efficient.

6.3.4 Summary
Figure 6.1 gives an overview of the possible storage/access-combinations and their per-
formance. Table 6.2 lists the fastest access strategy for all possible grid storage combi-
nations.

No access strategy clearly dominates in all situations, but the idxvar access strategy
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is often a good choice. Which implementation is fastest depends on the combination
with the grid storage strategy, as well as on the stencil properties. Surprisingly, the
naive access strategy is competitive. It often performs similarly as the idxvar strategy.
In situations where a lot of pointer chasing occurs (chasing grids and compressed grids),
using the idxvar strategy is advantageous. We observed that the shared access strategy
behaves very similarly to the idxvar strategy. We assume this is due to caching in the
idxvar strategy having the same effect as the explicitly used shared memory. The z-loop
and sliced z-loop access strategies only gave an advantage in one configuration, namely
for the laplap stencil in grids stored in uncompressed (both chasing and non-chasing)
fashion.
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Figure 6.2: Effect of neighborship table properties on runtime depending on problem
size. This shows the slowdowns relative to the fastest regular grid implementations for
the hdiff stencil on a small and a large grid (both z-curves memory layout with double
precision). The respective fastest access variant is plotted for each bar, which is one of
idxvar, naive, and shared for the shown benchmarks. This example for the hdiff stencil
is representative of the other two benchmarks as well, where the slowdowns follow a
similar pattern. (Note that in the fastwaves stencil, pointer chasing is not applicable as
there only direct neighbors are accessed.) Baseline: fastest regular grid implementation.

6.4 Effect of Grid Storage
Having implemented the stencils using the various grid access strategies, we then went
on to explore optimization possibilities in the grid storage, namely how the neighborship
tables could be stored in a way to enable faster accesses. The different approaches
are described in section 4. We evaluated four different neighborship table structures,
resulting from the combinations of the following two properties: First, the depth of the
neighborship table, i.e. whether only neighbors (chasing variant) or also neighbors-of-
neighbors (non-chasing variant) were stored. Second, whether the neighborship table
was compressed or uncompressed.

6.4.1 Pointer Chasing vs. Neighbor-of-Neighbor Storage
Two of the three benchmarked stencils, Laplace-of-Laplace and horizontal diffusion, ac-
cess neighbors beyond the directly face-touching cells (neighbors-of-neighbors). For those
stencils, we first assessed the performance when only direct neighbors are explicitly
stored. This approach requires pointer chasing: To access the neighbor of a neigh-
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Size Chasing? tex_
cache_
hit_
rate

l2_tex_
hit_
rate

stall_
memory_
dependency

Runtime

128× 128× 64 ✓ 73% 68% 59% 41µs
128× 128× 64 - 67% 72% 54% 40µs

512× 512× 64 ✓ 68% 684% 74% 841µs
512× 512× 64 - 63% 37% 60% 1042µs

Table 6.6: Selected metrics, including L1 cache hit rate (tex_cache_hit_rate), for
runs of the laplap stencil on unstructured grids of different sizes (all of them in z-curves
memory layout with double precision, uncompressed neighborship table), both with and
without pointer chasing. The idxvar access strategy was used with a fixed launch con-
figuration of 64× 4× 2 threads.

bor, two sequential lookups to the neighborship table become necessary. As the second
lookup can only be started once the first one has completed, a higher latency occurs in
this variant. Therefore, we then also tested variants in which the neighbors-of-neighbors
were explicitly stored in memory, reducing the number of required memory lookups for
these types of accesses from two to one. We call this non-chasing neighborship storage.
This approach comes at the cost of a higher memory footprint.

Generally, we observed the following trend: If the grid is small or compressed, pointer
chasing becomes an issue, and thus the non-chasing variants provide an advantage. In
larger uncompressed grids, the latency of the two lookups required for neighbors-of-
neighbor access can be effectively hidden. This is visible in figure 6.2, which outlines the
differences of the storage approaches for the fastest respective variant of the hdiff stencil
on grids of different sizes.

In all cases, a higher total number of device memory and L2 cache reads was observed
for the non-chasing variants. This is to be expected, as non-chasing variants need to
store and read more information from a larger number of different addresses. When
pointers to neighbors-of-neighbors are explicitly stored, the L1 cache hit rate lowers by
around 6% in both large and small grids. In large grids, the L2 cache hit rate also drops
dramatically; for smaller grids, it remains unaffected.

In large non-chasing grids, the additional neighbor-of-neighbor entries affect cache
locality more negatively than in small grids. This is because larger grids have more
neighborship table entries, while the cache size remains constant – consequently, some
data has to be evicted from the cache. This does not happen as often in a smaller
grid. The variants that perform pointer chasing experience a higher percentage of stalls
caused by memory dependencies; neighbor-of-neighbor reads block progress as the second
lookup waits for the result of the first one.

We conclude that non-chasing storage is beneficial to small grids, where it is effective
in reducing latency, and unfavorable for larger grids due to the caused cache evictions
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Compressed? Chasing? Storage # Entries Ratio* Freq.†

- ✓ both 1, 048, 576 1 < 1%
- - both 3, 145, 728 1 < 1%
✓ ✓ row-major 2054 0.00078 97.7%
✓ ✓ z-curves 2435 0.00093 20.3%
✓ - row-major 4093 0.00156 96.9%
✓ - z-curves 5299 0.00202 8.1%

*Ratio of number of compressed neighborship table entries to number of uncompressed
neighborship table entries. †Frequency of the most common entry in the neighborship
table.

Table 6.7: Properties of neighborship table before and after compression for 512×512×
64-sized grids with different memory layouts (z-curves and row-major), for both chasing
and non-chasing implementations.

(especially in the L2 cache) increasing the latency of neighbor accesses. Table 6.6 shows
an overview of the metrics discussed in this paragraph for an exemplary stencil run.

6.4.2 Effect of Neighborship Table Compression
As most unstructured grids have irregularities only in few places, much of the informa-
tion in the neighborship tables is redundant. Moving forward, we wanted to investigate
whether this redundancy could be made use of to further reduce unstructured stencil
runtimes. In section 4.2.2, we described a very simple compression scheme for the neigh-
borship tables motivated by this idea. In this section, we elaborate on its performance
implications.

Using compressed neighborship tables, we saw a reduction in runtimes for most
benchmarks on large 512 × 512 × 64-sized grids. The highest relative speedups were
attained for the laplap stencil, which ran 23% faster than its uncompressed counterpart.
In the hdiff stencil, we achieved a speedup of 21%. In contrast, the fastwaves stencil
was slightly slowed down by the added overhead of compression and ran 3% slower.

In smaller grids (128× 128× 64 and 64× 64× 64), the additional level of indirection
introduced by our compression scheme also mostly led to a deterioration in run times.
The interplay of grid size and compression can also be seen in figure 6.2.

In the following two subsections we will further elaborate on the efficacy of our
compression scheme in terms of (reduced) memory requirements and detail the effects
on parallel execution in an attempt to explain the observed runtimes.

Distribution of Neighborship Table Entries After Compression

Using the compression scheme, cells with the same neighbor patterns can share neigh-
borship table entries. Table 6.7 and figure 6.3 show the distribution of unique patterns
on a 512 × 512 × 64-sized grid for the two memory layouts benchmarked (row-major,
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Figure 6.3: Distribution of the first 40 neighborship table entries of a 512×512×64-sized
grid for both benchmarked memory layouts and chasing and non-chasing implementa-
tions. The y-axis shows how many cells share the same relative neighborship offsets.
The x-axis is the index in the neighborship table. A sharper peak means more effective
compression. As an example, the first two entries in the chasing neighborship table of
a grid with z-curves memory layout are shared by 53340 cells. Compare this to the un-
compressed case (not plotted), where each entry is shared across Z-levels between cells
with equal X- and Y-coordinates, i.e. 64 times in this example. Note the different scale
in the bottom row!
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Size Comp.? tex_
cache_
transactions

l2_tex_
read_
transactions

dram_
read_
transactions

gld_
efficiency

Runtime

64× 64× 64 - 466, 815 273, 384 57, 658 85% 18µs
64× 64× 64 ✓ 528,064 415, 834 51, 676 74% 19µs

128× 128× 64 - 1, 925, 279 1, 468, 085 508, 748 87% 51µs
128× 128× 64 ✓ 2,071,128 1, 420, 441 508, 208 75% 53µs

512× 512× 64 - 29, 980, 144 22, 391, 916 9, 392, 553 91% 820µs
512× 512× 64 ✓ 31,760,437 20, 805, 522 9, 402, 833 77% 741µs

Table 6.8: Runtimes and relevant metrics comparing executions of hdiff stencil
on compressed and uncompressed grids (z-curves memory layout with double pre-
cision, chasing neighborship table), implemented using the idxvar access strategy.
The optimal (fastest) launch configuration block size was chosen for each row, which
is different for uncompressed and compressed grids. Note the higher L1 cache
traffic (tex_read_transactions) and lower global load efficiencies (bad coalescing,
gld_efficiency) in all compressed variants.

z-curves). In row-major grids, the number of distinct patterns is lowest. In this case,
only the elements in the halo have different neighborship pointers; all others share the
top entry. Using a z-curves layout, the distribution of neighborship table accesses is
flatter. However, there is still a fairly high concentration of several frequently occurring
patterns.

Note that a completely random grid would result in a very even distribution. In such
a scenario, compression would not be able to reduce the number of entries meaningfully.

Runtime Effects of Compression on Stencil Execution

The motivating idea behind implementing compression for the neighborship tables was an
anticipated improvement to the caching of frequently used neighborship table entries. As
we observed, neighborship information is distributed favorably and concentrates around a
few frequently used entries (see table 6.7 in the previous section). By using compression,
we hoped that these entries remain in the L1 cache, and thus reduce the number of
expensive reads to the L2 cache (or even device memory) required for neighborship index
lookups. Yet, because cells with identical neighborship patterns share neighborship table
entries in the compressed scheme, a mapping from cell index to pattern index must be
implemented. This mapping introduces an additional lookup, whose latency may offset
the advantage of cached neighborship table entries.

Encouragingly, the desired improvements to caching seem to take place. We observed
that more frequent use of the L1 cache occurs across all benchmarks using compressed
storage (i.e. all memory layouts, all access strategies, and all grid sizes). We measured
a larger number of L1 cache transactions and a higher throughput from the L1 cache to
the processor. In total, more data was transferred from the L1 cache and less data had
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to be loaded from the L2 cache and device memory. The measures in table 6.8 confirm
that the anticipated caching of neighborship table entries does indeed happen.

Yet, as noted in the introduction to this section, compression gave an advantage only
on large grids and only for the simpler laplap and hdiff stencils. We suppose that this
limited advantage is due to the following several drawbacks caused by the additional
indirection added, i.e. the required pattern lookup:

First, the pattern lookup leads to uncoalesced memory accesses. This can not easily
be avoided, since the pattern may map neighborship lookups to any address.

Second, the added level of indirection causes latency which cannot easily be hidden.
A cell’s results may only be computed once the values of its neighbors have been loaded
(latency of neighborship lookup). To do this, the neighbors’ indices must be obtained,
which in turn cannot be done before the pattern lookup has completed in the compressed
scheme (latency of pattern lookup). In the case of a grid that stores only directly adjacent
neighbors (i.e. chasing grid), accessing neighbors-of-neighbors leads to an even longer
chain of pointers to be followed.

Third, in small grids, the supposed advantage of compressed grids may take place
even without compression, because even uncompressed neighborship tables fit into the
caches. Thus, we pay the overhead of compression with no gains.

Lastly, if a complex stencil requires a large number of fields, accesses to the values
of these fields can contend the limited L1 cache space. This causes neighborship table
entries to be evicted from the cache, nullifying the purported advantage of compression.
Employing an explicitly managed cache, as in the shared access strategy, may alleviate
this issue. Though, in the fastwaves stencil, we had no success with this approach.

In conclusion, the added overheads of the described compression scheme diminish
its usefulness in several scenarios. Still, in large grids with medium-complexity stencils,
compression can give considerable advantages. We reason that this advantage does
indeed come from the better L1 cache locality and the reduced L2 and device memory
traffic.

6.4.3 Summary
We observed that pointer chasing does inhibit performance in all grids with few entries
in the neighborship table, specifically small and medium-sized grids, as well as large
grids using neighborship table compression. In these cases, explicitly storing neighbors-
of-neighbors in the neighborship tables improves runtimes, but not as strongly as one
might anticipate. For large grids with an uncompressed neighborship table, performing
pointer chasing in stencils is faster than non-chasing variants (probably due to the large
number of neighborship table entries a non-chasing variant requires in this scenario).

Experimenting with a simple compression scheme, we determined the following: In
large grids, for both the hdiff and laplap stencils, compressing the neighborship table
provides a significant benefit. However, the additional memory lookup required and
unavoidable uncoalesced accesses to the neighborship table limit the possible advantage.
In the fastwaves stencil, the additional overhead of compression is counter-productive
and slows execution down. The same is the case for small grids.
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Figure 6.4: Impact of the total number of threads on the runtime for different imple-
mentations of the laplap stencil (512×512×64 grid, z-curves memory layout with double
precision, chasing and uncompressed neighborship table).

6.5 Optimal Block Size
One of the main determining factors for the performance of a kernel is the launch config-
uration, which includes grid size (number of blocks) and block size (number of threads,
described in section 3.3.3). As we implemented and evaluated our grid storage and grid
access strategies, we consistently ran our benchmarks across a large range of launch con-
figurations. In the previous sections, we reported best-case runtimes using the respective
optimal launch configuration. This optimal configuration varies heavily depending on
the implementation, as we will detail in this section.

CUDA provides the option to specify block sizes in three dimensions, providing each
thread with an X-, Y- and Z-index. In our benchmarks, we have tested all possible
combinations of block sizes in steps of powers of two from 32 up to 512. In order to
cover the entire problem domain (which remains constant in size), a decrease in the
number of threads is always accompanied by an increase in the number of blocks (grid
size) and vice versa. Owing to the way we map thread indices onto memory indices
(X thread index maps onto memory index directly), thread sizes in the X-dimension of
less than 32 are highly inefficient, as they lead to non-coalescing memory accesses. The
X-dimension of the benchmarked block sizes is therefore always at least 32.
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Figure 6.5: Fastest runtimes of all configurations for fixed numbers of threads in the Z-
dimension (other dimensions free) for the laplap stencil (512× 512× 64 grid, row-major
memory layout with double precision). Note how the Z-regularity of the grid makes it
advantageous to have a larger number of threads in the Z-dimension, as this leads to
caching of neighborship table entries, but only if the neighborship table is uncompressed.

6.5.1 Overview
The optimal total number of threads depends mostly on the grid access implementation
employed. In general, the same patterns can be observed for all three tested stencils and
all tested grid memory storage implementations: When using the naive, idxvar or shared
grid access strategies, it is best to have a high number of threads in total (256−512). The
z-loop and z-loop-sliced thrive on a lower number of threads due to occupancy concerns.
An exemplary overview of the runtimes as a function of total block size is given in figure
6.4.

The best shape of the block size vector changes with the used grid storage strategy.
Using uncompressed neighborship tables, it is best for the naive, idxvar and shared access
strategies to have 32 or 64 threads in X-dimension and the rest in Z-dimension. Those
implementations profit of more Z-threads because of the regularity of the grid in the
Z-dimension. The non-chasing variants profit even more of additional threads in the
Z-dimension. This is because, in non-chasing variants, more neighborships are stored in
the table; cache entries are thus evicted faster if many different X- and Y-coordinates
are accessed. In compressed neighborship tables, on the other hand, additional threads
in the Z-dimension are of no use to any of the access strategies – the greatly reduced
number of neighborship table entries after compression remains in cache independent
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Blocksize tex_cache_hit_rate l2_tex_hit_rate
32× 1× 1 44.39% 67.69%
32× 1× 2 57.96% 68.12%
64× 1× 2 66.21% 60.36%
64× 1× 4 71.72% 60.81%

Table 6.9: Cache hit rates for different block sizes for the laplap stencil, implemented
using a idxvar grid access strategy on a 512× 512× 64-sized domain (z-curves memory
layout with double precision, chasing and uncompressed neighborship table).

of the Z-block-size. See figure 6.5 for a comparison of how changes in the Z-dimension
of the block size vector translate to runtime changes. Whether the grid is stored as
row-major or using z-order curves does not strongly impact the required block sizes.

6.5.2 Optimal Block Sizes per Access Strategy
In this section, we further elaborate on the optimal block sizes for each access strategy
and aim to explain (using profiler metrics) why certain shapes of thread blocks are
beneficial.

Naive, Idxvar and Shared Grid Access Strategies

In order to always cover the entire problem domain, the number of blocks b in each
dimension in the naive, idxvar and shared grid access strategies is chosen as a function
on the problem size d and the chosen number of threads t as follows:

b =
(⌈

dx
tx

⌉ ⌈
dy
ty

⌉ ⌈
dz
tz

⌉)⊤

For the naive, idxvar and shared implementations, a high total number of threads per
block is beneficial to performance. For grids using an uncompressed neighborship table,
increasing the number of threads in the Z-dimension especially improves performance.

For the naive and idxvar strategies (in grids using uncompressed neighborship ta-
bles), the advantage of multiple Z-threads can be explained through the regularity of the
grid in the Z-dimension. Threads operating on cells with identical X- and Y-coordinates
access the neighborship tables at the same index. When multiple threads operate on
different Z-levels, caching of these shared neighborship table entries becomes very effec-
tive. Evidence for this presumed reason for the speedup is given by two facts: One, of all
block size combinations tested, the ones with more threads in the Z-dimension perform
best. Two, the Nvidia profiler reports higher cache hit rates if the number of threads in
Z-dimension is increased. As an example of this for the idxvar access strategy, see table
6.9.

These effects are strongest when using non-chasing grid storage. As this type of
storage leads to a larger number of entries in the neighborship table, entries may be
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Variant Blocksize Runtime achieved_
occupancy

issue_slot_
utilization

idxvar 512 783µs 85% 19%
idxvar 128 844µs 92% 18%
idxvar 32 986µs 48% 16%
z-loop 512 796µs 25% 10%
z-loop 128 546µs 42% 13%
z-loop 32 584µs 41% 12%

Table 6.10: Runtimes and occupancy metrics of idxvar and z-loop implementations of
the laplap stencil on an unstructured grid (size 512× 512× 64, z-curves memory layout
with double precision, chasing and uncompressed neighborship table) for a selection of
block sizes. The following block shapes were used: 512 = 256× 2× 1, 128 = 64× 2× 1
and 32 = 32× 1× 1. This table highlights the occupancy issues the z-loop variant faces
with too large block sizes. Note how the occupancy drops with an increased number of
threads, and how the runtime increases with it.

evicted from the cache more quickly. More threads in the Z-dimension, which access the
same neighborship table entries, prevent this by keeping the relevant neighborship table
entries “fresh.”

At the opposite end of the spectrum lie the grids stored using compressed neighbor-
ship tables. These tables are much smaller, and the same few entries are accessed in
almost all threads. Because of this, neighborship table entries remain in cache no matter
what the shape of the block size vector is, and additional threads in the Z-dimension
bring no benefit. Cache locality for the accessed values is more important here; de-
pending on the used layout for the values (z-curves or row-major) this means adding
additional threads in X (z-curves, spatial locality given), or X and Y (row-major, adding
another thread in Y gives some spatial locality).

By the design of the shared access strategy, a speedup is supposed to be attained with
a larger number of Z-threads; if there are more threads in Z-dimension within a block,
more sharing of neighborship relations through shared memory can take place. These
implementations indeed profit from more threads through shared memory in much the
same way as naive and idxvar variants profit from more threads through the cache in
the uncompressed grids.

Z-loop and Z-loop-sliced Grid Access Strategies

Contrary to the other stencils, the z-loop and z-loop-sliced grid access strategies suffer
from a high total thread count. As both of these strategies require one thread to perform
calculations for multiple cells on different Z-levels, the total number of blocks and threads
required to cover the entire grid is smaller. On the largest tested grid size (512×512×64),
this leads to occupancy issues: As threads stall, there is not enough work that can be
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scheduled to certain streaming multiprocessors to hide the latency. All threads inside a
block are required to be executed on the same SM; having more threads inside a block
thus gives fewer blocks that can be scheduled onto stalled SMs. Smaller block sizes, on
the other hand, give the scheduler a larger pool of blocks to choose from when trying to
hide latency. Compare table 6.10 for an example of how a too large block size negatively
impacts the z-loop implementation of the exemplary laplap benchmark.
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Figure 6.6: Relative overhead compared to the fastest regular variant of different imple-
mentations of the laplap stencil on an unstructured grid with z-curves memory layout.
For each bar, the fastest neighborship table implementation was plotted (i.e. all com-
binations of compressed and uncompressed, chasing and non-chasing were benchmarked
and the fastest setup was chosen). Baseline: fastest regular grid implementation.

6.6 Effect of Problem Domain Size and Precision
In previous sections, we mainly focused our performance analyses on large grids of size
512×512×64. This section gives some insight into how the performance of unstructured
grid stencil computations relates to different input domain sizes. As we noticed, the
relative overhead caused by unstructured grids varies strongly depending on the size of
the grid. Generally, stencils applied to small unstructured grids are closer to regular grid
runtimes than the same stencils applied to large unstructured grids (in relative terms).
At smaller sizes, the cache can be used more effectively.

Of special interest are size changes in the Z-dimension only. Changing the Z-size and
measuring the accompanying slowdowns reveals how well the different implementations
are able to make use of the regularity in the Z-dimension. We investigate this in section
6.6.2.

We also noticed that some grid storage optimizations are only effective on grids of
certain sizes. This is not addressed in this section, but in section 6.4.

6.6.1 Change in X and Y Domain Size
We have evaluated combinations of grid storage and access variants for the three stencils
on grids of X-Y size 64× 64 (small grid), 128× 128 (medium grid) and 512× 512 (large
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grid). We observed that relatively seen, increases in the X-Y-domain size affect the
unstructured variants more negatively than the regular ones.

For small domains, the runtimes of unstructured variants are generally close to those
of their regular counterparts. With increased domain size, there is an increase in the
relative slowdown of the unstructured variant with respect to the fastest regular imple-
mentation. We assume this is due to cache sizes; while in smaller grids, entire neighbor-
ship tables and cell values remain cached, larger grids necessitate larger neighborship
tables that cannot fit into the cache as a whole. Figure 6.6 shows this trend for the
laplap benchmark, but the same characteristics apply to the other stencils as well.

The z-loop grid access variant is the only exception to the described characteristics.
Its relative slowdown decreases for larger grid sizes. This is probably due to two reasons.
First, the z-loop variants already suffer from low occupancy in large grids. In small grids,
occupancy is even lower, not making use of the complete parallelism capabilities of the
GPU. Second, in small grids, the neighborship table may be in the cache in its entirety
after one read. This allows subsequent neighborship table accesses to be practically free.
This offsets the supposed optimization of the z-loop variant, which aims to reduce the
number of reads of neighborship table entries. This optimization only begins to provide
a benefit in large grids.

6.6.2 Change in Z domain size
Given a 512 × 512-sized base grid, we benchmarked our stencils with various Z-sizes
ranging from 1 to 64. Analyzing the relative unstructured grid overhead, we observed
two main patterns, which can be seen in figure 6.7. Which pattern the overhead follows
depends on the chosen grid storage. The observed patterns are as follows:

First, for uncompressed storage, the overhead decreases quickly for the first few Z-
size steps, then fluctuates around some constant. This can be most clearly be seen in
the non-chasing stored grids. Second, when compression is used, the overhead increases
in the first few Z-size steps, then also remains roughly constant.

These trends can be explained by two countering effects:
On one hand, the increased number of Z-levels naturally results in an increased total

number of cells. In an unstructured grid, some extra effort has to be made to determine
the location of each additional cell’s neighbors. We call this the once-per-cell cost.
This effect alone would lead to constant additional relative costs (i.e. linear additional
absolute costs) with respect to the regular grid.

On the other hand, as our grids are regular in the Z-dimension, neighborship pointers
can be re-used among threads operating on cells with the same X- and Y-coordinates. Let
us call a set of cells with identical X- and Y-coordinates a pillar of cells. If neighborship
pointers are effectively reused, loading them is only a once-per-pillar cost. No matter how
many Z-levels there are in the grid, the first load of the neighborship pointers remains
a constant cost. As Z-size increases, this constant becomes vanishingly small in relation
to the overall cost of the regular-grid computation. Thus, considering only the once-per-
pillar costs, performance should approach regular grid performance asymptotically for
increasing Z.
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Figure 6.7: Relative slowdowns of the laplap stencil, implemented using the idxvar
access strategy, on unstructured grids of various Z-sizes (z-curves memory layout with
double precision). Baseline: fastest regular grid implementation. The other two stencils
show similar characteristics.

The observed relative overheads result from a combination of the two described
effects (once-per-cell and once-per-pillar costs). In the uncompressed variants, the once-
per-pillar costs appear to dominate; thus, an increase in Z-size leads to better relative
runtimes.

Some of our optimized access strategies aim to make explicit use of the once-per-pillar
nature of neighborship reads (shared, z-loop, and z-loop-sliced). Even the access strategies
that do not explicitly exploit Z-regularity benefit from it if neighborship pointers happen
to reside in caches. In the best-case scenario, all neighborship pointers are already in
the L1 cache (idxvar), shared memory (shared access strategy), or loaded into registers
at the beginning of a loop (z-loop) when a thread begins computation.

6.6.3 Effect of Floating-Point Precision
We observed no significant differences in the relative slowdown when using single-precision
floating-point data types instead of double-precision data types. As expected, the abso-
lute runtimes decrease with lower precision. This happens in the same proportions for
both regular grid and unstructured grid implementations – both are roughly 40% faster
than double-precision speeds.

As it appears to not affect the characteristics of our benchmarks, we consistently
used double precision data types in all other experiments apart from this section.
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Conclusions

Having established the basics of general-purpose GPU programming on the Nvidia
CUDA platform in section 3, we explored several approaches to storing unstructured
grids and accessing them in the context of a stencil application in sections 4 and 5. Con-
cerning grid storage, we addressed the topics of coalescing, pointer chasing (neighbor-
of-neighbor access), storage of multiple fields (array-of-structs or struct-of-arrays), and
memory layout (row-major and z-curves), and evaluated the performance implications
of decisions in all of those areas. Furthermore, we elaborated on a scheme that detects
regular components and implemented neighborship table compression. For grid access,
we explored several ways to harness the regularity of the grid in the Z-dimension for
better runtimes.

In section 6, we assessed the performance of the implemented methods on three
stencils of increasing complexity (laplap, hdiff, and fastwves). Across all executed bench-
marks, we measured that the cost of switching from a regular to an unstructured grid
is a roughly constant time penalty influenced by the chosen access strategy and type of
neighborship table storage. In the fastest optimized cases, the additional time required
by the unstructured kernels was between 137µs and 159µs for the hdiff and laplap sten-
cils on a 512×512×64 grid, respectively. The overhead of the fastest implementation of
the computationally more complex fastwaves stencil was lower at only 102µs, supposedly
because this stencil accesses fewer neighbors in the X-Y-plane.

In relation to regular grid runtimes, these numbers translate to relative slowdowns
in the range of 1.04x to 1.45x for our fastest implementations. The biggest disparities
in these relative slowdowns are observed due to differences between the stencils: As
the absolute overhead is largely constant across all stencils, the cost of the required
neighbor lookups carries more weight in simple stencils. For the most simple stencil,
laplap, relative slowdowns are largest with values between 1.45x and 1.71x, depending
on the chosen storage strategy for the neighborship tables. The more complex fastwaves
stencil, which accesses nine different fields (compared to the one field of the laplap
stencil) only suffers from slowdowns in the 1.04x-area and is unaffected by the chosen
storage strategy. The medium-intensity horizontal diffusion sits in the middle with its
1.25x− 1.52x range.

57
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Likely, the cost of switching to indirect addressing can be mainly attributed to the
latencies introduced by the accesses to the neighborship tables. These lookups must
occur before any stencil computations can be done; the measured overheads thus quantify
these latencies.

Our proposed optimizations to neighborship table storage and access seem to show
positive effects, as a comparison with the initial, naive-approach runtimes reveal: Using
the naive access strategy on an uncompressed and chasing neighborship table yields
slowdowns of 2.07x for the laplap stencil and 1.52x for the hdiff stencil compared to
regular grid execution times. This is 42% and 22% slower than respective optimized
unstructured variants.

Table 6.2 summarizes the fastest optimized storage/access-combinations for all sten-
cils and reports their runtimes. We explored the differences that the employed storage
and access strategies make in more detail in sections 6.4 and 6.3. For low- to medium-
intensity stencils operating on large grids, we recommend using the idxvar access strategy
and storing the neighborship table in compressed, non-chasing fashion, as this was the
fastest combination across our benchmarks.

We also observed that performance differences depend largely on the problem do-
main size. Most results presented focussed on grids of size 512 × 512 × 64. In smaller
grids, deliberate optimization attempts often proved to be ineffective. Some of our opti-
mizations introduced small, one-time overheads intended to pay off later; this was only
effective in larger-sized grids. Furthermore, the choice of the right number of threads
when launching the kernels is especially important. Depending on the implementation,
a different number of threads, or a different arrangement of the threads is better. In
section 6.5 the effect of the block sizes was evaluated and explained.

Executing unstructured grid applications on the CUDA platform is especially promis-
ing for complex stencils, where we have shown that the overheads are relatively small in
relation to the regular grid runtime (1.04x). While overheads are relatively seen larger
in simple stencils (1.25x− 1.45x), we have also proven that effective improvements can
be made as compared to naive approaches.
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